Code

๐Ÿ”— github.com/hayannn/AIFFEL_MAIN_QUEST/MiniProject4

ํ”„๋กœ์ ํŠธ ๋ชฉํ‘œ


Objective 1

  • ARIMA๋ฅผ ํ†ตํ•œ ์‹œ๊ณ„์—ด ์˜ˆ์ธก ์ˆ˜ํ–‰

Objective 2

  • ARCH๋ฅผ ํ†ตํ•œ S&P500์˜ ๋ณ€๋™์„ฑ ๋ชจ๋ธ๋ง ์ˆ˜ํ–‰


์ˆœ์„œ ์ •๋ฆฌ


  • arch & pmdarima ์„ค์น˜
  • ARIMA
    • ์‚ฌ์šฉํ•  ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ import
    • ๋ฐ์ดํ„ฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ & ํ˜•ํƒœ ํ™•์ธ
    • ๋ถ„์‚ฐ์„ ์ผ์ •ํ•˜๊ฒŒ ๋งŒ๋“ค๊ธฐ - log transformation
    • ์ฐจ๋ถ„ ํ›„ ๋ถ„์„
    • ARIMA ์ ์šฉ
    • Auto ARIMA ์ ์šฉ
    • ๊ฒฐ๊ณผ ๋ถ„์„
    • ์‹œ๊ฐํ™”
  • ARCH
    • ๋ฐ์ดํ„ฐ ๋ฐ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
    • ๋ฐ์ดํ„ฐ ๊ฐ€๊ณต ๋ฐ ์‹œ๊ฐํ™”
    • ARCH ์ ํ•ฉ
    • ๊ฒฐ๊ณผ ๋ถ„์„
    • ์‹œ๊ฐํ™”
  • ํšŒ๊ณ 


arch & pmdarima ์„ค์น˜


ํ•„์š”ํ•œ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ์„ค์น˜

  • arch ์„ค์น˜
!pip install arch==6.3.0
  • pmdarima ์„ค์น˜
!pip install pmdarima

ARIMA

์‚ฌ์šฉํ•  ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ import

  • statsmodels.graphics.tsaplots์˜ plot_acf, plot_pacf
  • statsmodels.tsa.arima_model์˜ ARIMA
  • pmdarima : Auto ARIMA ๋ชจ๋ธ
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from statsmodels.tsa.arima_model import ARIMA
import pmdarima as pm

๋ฐ์ดํ„ฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ & ํ˜•ํƒœ ํ™•์ธ

  • ๋ฐ์ดํ„ฐ์…‹ : AirPassengers
ap = pd.read_csv('/content/drive/MyDrive/แ„‰แ…ตแ„€แ…จแ„‹แ…งแ†ฏ/AirPassengers.csv')
ap


  • Month ์ปฌ๋Ÿผ ์‚ญ์ œ
ap.drop('Month', axis = 1, inplace = True)
ap


  • ๋ฐ์ดํ„ฐ ํ˜•ํƒœ ํ™•์ธ
    • ๋ถ„์‚ฐ ์ผ์ •ํ•˜์ง€ ์•Š์Œ
    • ์ƒ์Šน ์ถ”์„ธ
    • ๋น„์ •์ƒ ๋ฐ์ดํ„ฐ๋กœ ๋ถ„๋ฅ˜ํ•ด์•ผ ํ•จ
plt.plot(ap)
plt.show()


๋ถ„์‚ฐ์„ ์ผ์ •ํ•˜๊ฒŒ ๋งŒ๋“ค๊ธฐ - log transformation

  • ๋กœ๊ทธ ๋ณ€ํ™˜
ap_transformed = np.log(ap)
ap_transformed


  • ACF plot, PACF plot์œผ๋กœ ์‹œ๊ฐํ™”ํ•ด ํ™•์ธ
    • ๊ธธ์ด๊ฐ€ ๊ธธ์ˆ˜๋ก ์œ ์˜๋ฏธํ•จ์„ ์˜๋ฏธ
    • ACF plot : ์ ์ฐจ ๊ฐ์†Œํ•˜๋Š” ํ˜•ํƒœ
    • PACF plot : lag 2๊นŒ์ง€๋Š” ์œ ์˜๋ฏธํ•จ์„ ๋ฐœ๊ฒฌํ•  ์ˆ˜ ์žˆ์Œ

๋ฐ์ดํ„ฐ ์ž์ฒด๊ฐ€ ์•„์ง ์ฆ๊ฐ€ ์ถ”์„ธ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์Œ

  • ACF, PACF ๋ชจ๋‘ ๋น„์Šทํ•œ ํ˜•ํƒœ๋ฅผ ๋„๊ณ  ์žˆ๋‹ค๊ณ  ๋ด๋„ ๋ฌด๋ฐฉ
  • ๋” ์ ํ•ฉํ•˜๋ ค๋ฉด ์ฐจ๋ถ„ ์ง„ํ–‰์ด ํ•„์š”ํ•จ


์ฐจ๋ถ„ ํ›„ ๋ถ„์„

  • ์ฐจ๋ถ„์œผ๋กœ ์ถ”์„ธ ์ œ๊ฑฐํ•˜๊ธฐ
ap_diff = ap_transformed.diff()
ap_diff = ap_diff.dropna() # NaN ๊ฐ’ ์ œ๊ฑฐ

  • ์‹œ๊ฐํ™”
    • lag ๊ฐ’์„ ๋” ๋ช…ํ™•ํžˆ ๋ณด๊ธฐ ์œ„ํ•ด 1 ๋‹จ์œ„๋กœ x์ถ• ์กฐ์ •
    • lag 0์€ ์ž๊ธฐ ์ž์‹ ์ด๋‹ˆ ์ œ์™ธ

  • ACF plot
    • lag 1, lag 12 ์ •๋„๊ฐ€ ์œ ์˜๋ฏธํ•˜๋‹ค๊ณ  ํŒ๋‹จํ•ด๋ณผ ์ˆ˜ ์žˆ์Œ
plot_acf(ap_diff)
plt.xticks(range(0, len(ap_diff), 1))
plt.plot();


  • PACF plot
    • lag 1, lag 8~12 ์ •๋„๊ฐ€ ์œ ์˜๋ฏธ
plot_pacf(ap_diff)
plt.xticks(range(0, len(ap_diff), 1))
plt.plot();

๊ทธ๋ž˜ํ”„๊ฐ€ ์˜ˆ์‹œ ๊ฒฐ๊ณผ๊ฐ€ ์กฐ๊ธˆ ๋‹ค๋ฅด๊ฒŒ ์ถœ๋ ฅ๋จ

  • statsmodels์˜ ๋ฒ„์ „ ์ฐจ์ด๋กœ Default ๊ฐ’์ด ๋‹ฌ๋ผ์ ธ ๋ฐœ์ƒํ•œ ๋ฌธ์ œ
    • LMS : 0.13.0
    • ์ฝ”๋žฉ : 0.14.4
  • ํ•ด๊ฒฐ : 0.13.0์—์„œ ์‚ฌ์šฉํ•˜๋Š” Default๋ฅผ ๋ช…์‹œํ•ด์„œ ๋‹ค์‹œ ๊ทธ๋ž˜ํ”„ ์ถœ๋ ฅ
    • Release 0.13.0์˜ "Fixed parameters in ARIMA estimators" ๋ถ€๋ถ„ ์ฐธ๊ณ 
plot_pacf(ap_diff, method='yw', alpha=0.05)
plt.xticks(range(0, len(ap_diff), 1))
plt.plot();


์ด ์‹œ์ ์—์„œ ์•Œ ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์€?

  • ACF, PACF ๋ชจ๋‘ 12์—์„œ ๊ฐ€์žฅ ์œ ์˜๋ฏธํ•œ ์ƒ๊ด€ ๊ด€๊ณ„๊ฐ€ ๋ณด์ž„
  • ๊ณ„์ ˆ์„ฑ ์„ฑ๋ถ„์œผ๋กœ ์ถ”์ธก
  • Auto ARIMA ์ ์šฉ ์‹œ, ์ด๋Ÿฌํ•œ ๊ณ„์ ˆ์„ฑ ์„ฑ๋ถ„์„ ๊ณ ๋ คํ•ด์•ผํ•˜๋‚˜, ์ด ๊ฐ’ ์ž์ฒด๋ฅผ ์œ ์˜๋ฏธํ•˜๊ฒŒ ๋ณด์ง€ ์•Š๋Š”๋‹ค๋ฉด ๊ทธ ์ž์ฒด๋กœ ์œ ์˜๋ฏธํ•˜์ง€ ์•Š๊ฒŒ ๋ ์ˆ˜๋„ ์žˆ์Œ์„ ์ธ์ง€ํ•˜๊ณ  ์žˆ์–ด์•ผ ํ•จ

โ„๏ธ ์˜๋ฌธ์ 

  • ACF์™€ PACF์˜ ์œ ์˜๋ฏธํ•˜๋‹ค๋Š” ๊ธฐ์ค€์ด ๋ชจํ˜ธํ•œ ๋ฌธ์ œ
    • "์Œ์ˆ˜ ๋ถ€๋ถ„์€ ์œ ์˜๋ฏธํ•˜์ง€ ์•Š์€ ๋ณ€์ˆ˜์ธ๊ฑด์ง€?"
      • ๊ฐ•์˜์—์„œ๋Š” ACF์˜ ์Œ์ˆ˜ ๋ถ€๋ถ„์„ ๋ฐฐ์ œํ–ˆ๊ธฐ ๋•Œ๋ฌธ์— ๊ถ๊ธˆํ•ด์ง
      • lag 4, 8๋„ ์œ ์˜๋ฏธํ•˜๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ๋Š”๊ฒŒ ์•„๋‹Œ๊ฐ€?
    • PACF์˜ ๊ฒฝ์šฐ, ์Œ์ˆ˜๊ฐ’์„ ํฌํ•จํ•ด ์œ ์˜๋ฏธํ•œ ๊ฒƒ์œผ๋กœ ํŒ๋ณ„ํ•ด์„œ ๋” ํ˜ผ๋ž€ ๊ฐ€์ค‘
  • ํ˜„์žฌ๋กœ์„œ์˜ ๊ฐ€์ • : D๊ฐ’์„ 12๋กœ ์ง€์ •ํ•ด์„œ ์ง„ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด ์ฆ‰, ACF์™€ PACF๊ฐ€ ํ•จ๊ป˜ ์ตœ๋Œ€๋กœ ์œ ์˜๋ฏธํ•œ ์ˆ˜์น˜๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์žก๊ธฐ ์œ„ํ•ด ์ž„์˜ ์ง€์ •ํ•œ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ


ARIMA ์ ์šฉ

  • ๋กœ๊ทธ ๋ณ€ํ™˜ํ•œ ap_transformed ์‚ฌ์šฉ
  • test ๋ฐ์ดํ„ฐ ๋ถ„๋ฆฌ(20% ์ •๋„ ์ž๋ฅด๊ณ , 80%๋งŒ ์ ํ•ฉ)
train_size = int(len(ap_transformed)*0.8)

ap_transformed_train = ap_transformed[:train_size]
ap_transformed_test = ap_transformed[train_size:]

Auto ARIMA ์‚ฌ์šฉํ•˜์—ฌ ํ›ˆ๋ จ

  • seasonal : False๋ผ๋ฉด -> non-seasonal model๋กœ ์ œํ•œ
  • suppress_warnings : ์—๋Ÿฌ ๋ฌธ๊ตฌ ignore
  • trace : True์ผ ๊ฒฝ์šฐ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ•˜๋ฉด -> ๊ทธ ์ผ๋ถ€ ๋‚ด์šฉ ์ถœ๋ ฅ
  • max_D : seasonal ์ตœ๋Œ€๊ฐ’ ์„ค์ • ๊ฐ€๋Šฅ
model = pm.AutoARIMA(seasonal = True, suppress_warnings = True, trace = True, max_D = 12, D = 12)
res = model.fit(ap_transformed_train)

์ ํ•ฉ ํŒŒ๋ผ๋ฏธํ„ฐ : ARIMA(5,1,2)


๊ฒฐ๊ณผ ๋ถ„์„

  • (5,1,2)์˜ AIC : -219.339
    • ๋‹ค๋ฅธ ๊ฒฝ์šฐ๋ณด๋‹ค, ๊ฐ€์žฅ ๋‚ฎ๊ฒŒ ์ธก์ •๋จ
  • Time : 0.68s
    • ์‹œ๊ฐ„์ด ์ง€๋‚˜์น˜๊ฒŒ ๋งŽ์ด ์†Œ์š” or ๋ชจ๋ธ ๋ณต์žก์„ฑ์ด ๋†’์•„์ง€๋ฉด โžก๏ธ ๊ณ„์‚ฐ ๋น„ํšจ์œจ์„ฑ ๋†’์•„์ง
    • ๊ณผ์ ํ•ฉ ๋ฐฉ์ง€๋ฅผ ์œ„ํ•œ ์ ๋‹นํ•œ ๊ฐ’ ์„ ์ •์ด ํ•„์š”ํ•จ

  • confidence interval๊นŒ์ง€ ๋„์ถœ
preds, conf_int = res.predict(n_periods=ap_transformed_test.shape[0], return_conf_int=True)

  • ๊ฒฐ๊ณผ
    • preds : ๋ชจ๋ธ ์˜ˆ์ธก ๊ฐ’
      • 29 : ์˜ˆ์ธก๊ฐ’ ๊ฐœ์ˆ˜
      • pandas์˜ Series ๊ฐ์ฒด
    • conf_int : ์˜ˆ์ธก๊ฐ’์— ๋Œ€ํ•œ ์‹ ๋ขฐ ๊ตฌ๊ฐ„
print(preds.shape)
print(type(preds))
print('--'*40)
print(preds.shape[0])
print(type(preds.shape[0]))
print('--'*40)
print(preds)
print('--'*40)
print(conf_int)


์‹œ๊ฐํ™”

  • ํŒŒ๋ž€์ƒ‰ : ๊ธฐ์กด train ๋ฐ์ดํ„ฐ
  • ์  ๋ถ€๋ถ„ : ์›๋ž˜ ๊ฐ€์ง€๊ณ  ์žˆ๋˜ y๊ฐ’
  • ์ ์ถ”์ •, ๊ตฌ๊ฐ„ ์ถ”์ • ๋ชจ๋‘ ์ถœ๋ ฅ
  • ์ฃผํ™ฉ์ƒ‰ : ARIMA 1, 2, 3์ด ์˜ˆ์ธกํ•œ ๋ถ€๋ถ„ โžก๏ธ ์ถ”์„ธ ๋ฐ˜์˜์„ ์ž˜ํ•˜๊ณ  ์žˆ์Œ!
x_axis = np.arange(ap_transformed_train.shape[0] + ap_transformed_test.shape[0])

plt.plot(x_axis[:ap_transformed_train.shape[0]], ap_transformed_train, alpha=0.75)
plt.plot(x_axis[ap_transformed_train.shape[0]:], preds, alpha=0.75)
plt.scatter(x_axis[ap_transformed_train.shape[0]:], ap_transformed_test, alpha=0.4, marker='o')
plt.fill_between(x_axis[-preds.shape[0]:], conf_int[:, 0], conf_int[:, 1], color='b', alpha=0.1)
plt.title("Log Transformed Air Passengers Forecast")
plt.show()



ARCH

๋ฐ์ดํ„ฐ ๋ฐ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ

  • datetime : ๋‚ ์งœ ๋ฐ ์‹œ๊ฐ„ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ
  • arch.data.sp500 : S&P 500 ๋ฐ์ดํ„ฐ์…‹์„ arch์—์„œ ๋ถˆ๋Ÿฌ์˜ฌ ์ˆ˜ ์žˆ์Œ
import datetime as dt
import arch.data.sp500

๋ฐ์ดํ„ฐ ๊ฐ€๊ณต ๋ฐ ์‹œ๊ฐํ™”

  • ์‹œ์ž‘ ๋‚ ์งœ : 2002-01-01
  • ๋ ๋‚ ์งœ : 2022-01-01
  • ๊ธฐ์ค€ : ์ข…๊ฐ€(Adj Close)
st = dt.datetime(2002, 1, 1)
en = dt.datetime(2022, 1, 1)
data = arch.data.sp500.load()

market = data["Adj Close"]
returns = 100 * market.pct_change().dropna()

  • Return(์ˆ˜์ต๋ฅ )์„ ๊ทธ๋ž˜ํ”„๋กœ ์‹œ๊ฐํ™”
ax = returns.plot()
xlim = ax.set_xlim(returns.index.min(), returns.index.max())
plt.show()

  • ์กฐ๊ฑด๋ถ€ ์ด๋ถ„์‚ฐ์„ฑ ๋ฐœ๊ฒฌ
    • ๋…๋ฆฝ๋ณ€์ˆ˜ ์˜ค์ฐจํ•ญ์ด ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ์žˆ๋Š” ๊ฒฝ์šฐ
    • 2008๋…„ ์ฆˆ์Œ์ธ ๊ฒƒ์œผ๋กœ ๋ณด์•„, ๊ธˆ์œต ์œ„๊ธฐ ๋‹น์‹œ๋กœ ์ถ”์ธก
    • 2007~2008๋…„ : ๋ฏธ๊ตญ์—์„œ์˜ ๋ถ€๋™์‚ฐ ๋ฒ„๋ธ” ๋ถ•๊ดด๋กœ ์„ธ๊ณ„ ๊ธˆ์œต ์œ„๊ธฐ ์ดˆ๋ž˜๋˜์—ˆ์Œ

ARCH ์ ํ•ฉ

  • Return์„ ARCH ๋ชจ๋ธ์— ์ ํ•ฉ
  • summary ํ™•์ธ(p-value, AIC, BIC ์ค‘์‹ฌ์œผ๋กœ ๋ถ„์„)
from arch import arch_model

am = arch_model(returns)
res = am.fit(update_freq=5)

print(res.summary())


๊ฒฐ๊ณผ ๋ถ„์„

  • GARCH์˜ ์ž๋™ ์ ์šฉ

p-value

  • 9.302e-07 โžก๏ธ 0.0000009302 ๊ฐ€๋Ÿ‰์˜ ์ˆ˜์น˜, ์•„์ฃผ ์ž‘์€ ์ˆ˜์น˜์— ํ•ด๋‹นํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜๋ฏธ

AIC

  • 13881.4 โžก๏ธ ๊ฐ’์ด ์ž‘์„์ˆ˜๋ก ์ข‹์€ ๋ชจ๋ธ ์˜๋ฏธ, ์ˆ˜์น˜ ์ž์ฒด๋งŒ์œผ๋กœ ๋ดค์„ ๊ฒฝ์šฐ์—๋Š” ๋‹ค์†Œ ๋†’์Œ

BIC

  • 13907.5 โžก๏ธ ๊ฐ’์ด ์ž‘์„์ˆ˜๋ก ์ข‹์€ ๋ชจ๋ธ ์˜๋ฏธ, ์ˆ˜์น˜ ์ž์ฒด๋งŒ์œผ๋กœ ๋ดค์„ ๊ฒฝ์šฐ์—๋Š” ๋‹ค์†Œ ๋†’์Œ

Volatility Model ํ•ด์„

  • omega

    • p-value : 1.854e-04(0.0001854)
    • ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜๋ฏธ
  • alpha[1]

    • arch๋ฅผ ํ†ตํ•ด ์•Œ์•„๋‚ผ ์ˆ˜ ์žˆ๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐ’
    • p-value : 4.105e-15(0.000000000000004105)
    • ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜๋ฏธ
  • beta[1]

    • arch๋ฅผ ์ œ์™ธํ•œ garch์—์„œ๋งŒ ๋‚˜ํƒ€๋‚˜๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐ’
    • p-value: 0.000
    • ํ†ต๊ณ„์ ์œผ๋กœ ์•„์ฃผ ์œ ์˜๋ฏธ
  • ์ฆ‰, alpha[1], Beta[1]๊ฐ€ GARCH(1,1)์„ ์˜๋ฏธ

  • p-value๋ฅผ ํ†ตํ•ด ์‹ ๋ขฐ๋„ 95%์—์„œ ์ด๋“ค์ด ์œ ์˜๋ฏธํ•˜๋‹ค๊ณ  ๊ฒฐ๋ก  ๋‚ด๋ฆด ์ˆ˜ ์žˆ์Œ


์‹œ๊ฐํ™”

  • ๋ชจ๋ธ ์ ํ•ฉ ํ›„ ๋‚จ์€ ๋‚˜๋จธ์ง€ ์ œ์‹œ
  • ์˜ˆ์ธกํ•œ ์กฐ๊ฑด๋ถ€ ๋ถ„์‚ฐ ๊ฐ’ ํ™•์ธ ๊ฐ€๋Šฅ
res.plot()

  • Standardized Residuals
    • ๋šœ๋ ทํ•œ ์กฐ๊ฑด๋ถ€ ์ด๋ถ„์‚ฐ์„ฑ์„ ๋ณด์—ฌ์ฃผ๋Š” ๋ถ€๋ถ„์ด ์‚ฌ๋ผ์ ธ โžก๏ธ ๋ชจ๋ธ ์ ํ•ฉ์ด ์ž˜ ๋˜์—ˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ์Œ

ํšŒ๊ณ 

  • ์ „์ฒด์ ์œผ๋กœ ์–ด๋ ค์šด ์ˆ˜์ค€์€ ์•„๋‹ˆ์—ˆ์œผ๋‚˜, ACF ๋ฐ PACF์˜ ์œ ์˜๋ฏธํ•˜๋‹ค๋Š” ๊ธฐ์ค€ ์ž์ฒด๊ฐ€ ์• ๋งคํ•˜๊ฒŒ ๋Š๊ปด์ ธ์„œ ํŒ๋‹จ์— ์–ด๋ ค์›€์ด ์žˆ์—ˆ์Œ
    • ๊ฐ•์˜์—์„œ์˜ ๋‚ด์šฉ์ด ๋‹ค์†Œ ์ผ๊ด€์ ์ด์ง€ ๋ชปํ–ˆ๋‹ค๋Š” ์ƒ๊ฐ
  • ์ „๋ฐ˜์ ์œผ๋กœ ๊ฒฐ๊ณผ๋ฅผ ํ•ด์„ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด์„œ ์•„์ง ๋ฏธ์ˆ™ํ•˜๋‹ค๋Š” ์ƒ๊ฐ์ด ๋“ค์—ˆ์Œ
    • ํ†ต๊ณ„์ ์ธ ์ด์œ ๋ฅผ ์ฐพ์•„์•ผํ•˜๋Š” ๋ชจ๋ธ์˜ ํŠน์„ฑ์ƒ, ํ†ต๊ณ„์ ์ธ ์ง€์‹์ด ์•„์ฃผ ๋งŽ์ด ํ•„์š”ํ•˜๊ณ  ๊ทธ๊ฒƒ์„ ๊ธฐ์ค€์œผ๋กœ ๋ชจ๋ธ ์ ํ•ฉ์„ฑ์„ ๋”ฐ์ ธ๋ณด๋Š” ์—ฐ์Šต์ด ์•„์ฃผ ๋งŽ์ด ํ•„์š”ํ•˜๋‹ค๊ณ  ๋Š๋‚Œ
profile
์–ธ์  ๊ฐ€ ๋‚ด ์ฝ”๋“œ๋กœ ์„ธ์ƒ์— ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ๋„๋ก, BE&Data Science ๊ฐœ๋ฐœ ๊ธฐ๋ก ๋…ธํŠธโ˜˜๏ธ

0๊ฐœ์˜ ๋Œ“๊ธ€