Mask man classification - dive to cnn
# MNIST 데이터 가져오기
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train, X_test = X_train / 255, X_test /255
X_train = X_train.reshape((60000, 28, 28, 1))
X_test = X_test.reshape((10000, 28, 28, 1))
# 구조 가져오기
from tensorflow.keras import layers, models
model = models.Sequential([
layers.Conv2D(3, kernel_size=(3, 3), strides=(1, 1), padding='same',
activation='relu', input_shape=(28, 28, 1)), # 3: 특성
layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2)),
layers.Dropout(0.25),
layers.Flatten(),
layers.Dense(1000, activation='relu'),
layers.Dense(10, activation='softmax')
])
model.summary()

# 내가 구성한 layers들을 호출할 수 있다
model.layers

# 아직 학습하지 않은 conv 레이어의 웨이트의 평균
conv = model.layers[0]
conv_weights = conv.weights[0].numpy()
conv_weights.mean(), conv_weights.std()
import matplotlib.pyplot as plt
plt.hist(conv_weights.reshape(-1, 1))
plt.xlabel('weights')
plt.ylabel('count')
plt.show()

# conv_weights, filter
fig, ax = plt.subplots(1, 3, figsize=(15, 5))
for i in range(3):
ax[i].imshow(conv_weights[:, :, 0, i], vmin=-0.5, vmax=0.5) # vmin, vmax : 같은 값의 색상을 보이게 하기 위해(?..)
ax[i].axis('off')
plt.show()

# 학습
import time
%time
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
hist = model.fit(X_train, y_train, epochs=5, verbose=1,
validation_data = (X_test, y_test))
# 학습 후 conv filter의 변화
fig, ax = plt.subplots(1, 3, figsize=(15, 5))
for i in range(3):
ax[i].imshow(conv_weights[:, :, 0, i], vmin=-0.5, vmax=0.5)
ax[i].axis('off')
plt.show()

# 0번 데이터는 5
plt.imshow(X_train[0], cmap='gray')

# Conv 레이어에서 출력 뽑기
inputs = X_train[0].reshape(-1, 28, 28, 1)
conv_layer_output = tf.keras.Model(model.input, model.layers[0].output) # 앞에서 한 모델의 input, output을 모델로 연결..
conv_layer_output.summary()

# 입력에 대한 feature map 뽑기
feature_maps = conv_layer_output.predict(inputs)
feature_maps.shape
feature_maps[0, :, :, 0].shape
# Feature map이 본 숫자 5
fig, ax = plt.subplots(1, 3, figsize=(15, 5))
for i in range(3):
ax[i].imshow(feature_maps[0, :, :, i])
ax[i].axis('off')
plt.show()

# 방금의 과정 함수 생성
# reshape : https://rfriend.tistory.com/345
def draw_feature_maps(n):
inputs = X_train[n].reshape(-1, 28, 28, 1)
feature_maps = conv_layer_output.predict(inputs)
fig, ax = plt.subplots(1, 4, figsize=(15, 5))
ax[0].imshow(inputs[0, :, :, 0], cmap='gray')
for i in range(1, 4):
ax[i].imshow(feature_maps[0, :, :, i-1])
ax[i].axis('off')
plt.show()
draw_feature_maps(50)

draw_feature_maps(13)

draw_feature_maps(5)

# 모델 채널 증가
model1 = models.Sequential([
layers.Conv2D(8, kernel_size=(3, 3), strides=(1, 1), padding='same',
activation='relu', input_shape=(28, 28, 1)), # 3: 특성
layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2)),
layers.Dropout(0.25),
layers.Flatten(),
layers.Dense(1000, activation='relu'),
layers.Dense(10, activation='softmax')
])
# 학습
import time
%time
model1.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
hist = model1.fit(X_train, y_train, epochs=5, verbose=1,
validation_data = (X_test, y_test))
conv_layer_output = tf.keras.Model(model1.input,model1.layers[0].output)
conv_layer_output
def draw_feature_maps(n):
inputs = X_train[n].reshape(-1, 28, 28, 1)
feature_maps = conv_layer_output.predict(inputs)
fig, ax = plt.subplots(1, 9, figsize=(15, 5))
ax[0].imshow(inputs[0, :, :, 0], cmap='gray')
for i in range(1, 9):
ax[i].imshow(feature_maps[0, :, :, i-1])
ax[i].axis('off')
plt.show()
draw_feature_maps(1)

draw_feature_maps(19)
