[컴퓨터비전] CNN

SSOYEONG·2022년 6월 2일
0

Computer Vision

목록 보기
5/7
post-thumbnail

What is CNN

  • Convolutional Neural Networks
  • CNNs stack CONV, POOL, FC layers.

Convolution layer (CONV)

  • CONV uses filters that perform convolution opereations as it i scanning the input image with respect to its dimensions.
  • The result of convolution must be two dimensional.
  • Padding 통해서 input, output 사이즈를 맞춘다.

Pooling layer (POOL)

  • POOL is a downsampling operation.

Weight initialization

  • sigmoid and tanh activation function -> Xavier 적합
  • ReLU -> He 적합
  • 대부분 He initialization 사용

Backpropagation

  • Feed the error backwards through the network
  • Ultimately adjut the weights of all the connections of the network

Techniques to reduce overfitting

  • Increase training data
  • Reduce model complexity
  • Early stopping during the training phase
  • Add regularization
  • Use dropout for neural networks

CNN Model Architectures

https://velog.io/@ssoyeong/%EB%94%A5%EB%9F%AC%EB%8B%9D-CNN-Architectures

DenseNet

  • 하나의 레이어에만 전달하는 것이 아니라, 여러 개 dense하게.
  • Strengthen feature propagation

FPN (Feature Pyramid Network)

  • Detecting objects at different scales
  • 서로 다른 해상도의 feature maps를 쌓아올린 형태
  • Bottom-up, top-down 방식 두 가지를 적용해서 더 좋은 feature를 생성한다.

Squeeze-Excitation(SE) block

  • explicitly modelling the interdependencies between the channels of its convolutional features.
  • 중요한 channel을 찾는다. Channel attention을 고려해야 한다.
  • Squeeze: Global information embedding, 각 feature map에 대한 전체 정보 요약
  • Excitation: Adaptive Feature Recalibration, 각 feature map의 중요도를 조정

장점

  • The SE block can be integrated into standard architectures.
  • 파라미터의 증가량에 비해 모델 성능 향상도가 매우 크다.
profile
Übermensch

0개의 댓글