Algorithm

ํƒ๊ฐ€์ด๋ฒ„ยท2025๋…„ 2์›” 22์ผ
0

Algorithm

๋ชฉ๋ก ๋ณด๊ธฐ
1/6
post-thumbnail

๐Ÿ“Œ CLRS ๊ณต๋ถ€ ํ”Œ๋žœ

๋ชฉํ‘œ: 6๊ฐœ์›” ๋™์•ˆ CLRS(Introduction to Algorithms, 4th Edition)๋ฅผ ํ•™์Šตํ•˜๋ฉฐ, ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ค๊ณ„ ๋ฐ ๋ถ„์„ ์—ญ๋Ÿ‰์„ ๊ฐ•ํ™”ํ•˜๊ธฐ.

1๏ธโƒฃ ํ•™์Šต ๋ฐฉ๋ฒ•

  • ์ด๋ก  ํ•™์Šต: ๋งค์ฃผ ํŠน์ • ์žฅ์„ ์ •ํ•ด ์ฝ๊ณ  ๊ฐœ๋… ์ •๋ฆฌ
  • ์ฝ”๋”ฉ ์—ฐ์Šต: ํ•ด๋‹น ์žฅ์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ Python์œผ๋กœ ๊ตฌํ˜„
  • ๋ฌธ์ œ ํ’€์ด: ์—ฐ์Šต๋ฌธ์ œ ๋ฐ LeetCode, Codeforces ํ™œ์šฉ
  • ๋ฆฌ๋ทฐ ๋ฐ ๋ณต์Šต: 2~3์ฃผ๋งˆ๋‹ค ํ•œ ๋ฒˆ์”ฉ ๊ฐœ๋… ๋ณต์Šต

2๏ธโƒฃ 6๊ฐœ์›” ํ•™์Šต ๋กœ๋“œ๋งต

์ฃผ์ฐจํ•™์Šต ๋‚ด์šฉ์‹ค์Šต & ๋ฌธ์ œ ํ’€์ด
1์ฃผ์ฐจ1์žฅ: ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์—ญํ• ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฐœ๋… ์ •๋ฆฌ
2-3์ฃผ์ฐจ2-3์žฅ: ์ •๋ ฌ, ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋ถ„์„์‚ฝ์ž… ์ •๋ ฌ, ํ•ฉ๋ณ‘ ์ •๋ ฌ ๊ตฌํ˜„
4-5์ฃผ์ฐจ4์žฅ: ๋ถ„ํ•  ์ •๋ณตStrassenโ€™s matrix multiplication ๊ตฌํ˜„
6์ฃผ์ฐจ5์žฅ: ํ™•๋ฅ ์  ๋ถ„์„๊ณผ ๋žœ๋ค ์•Œ๊ณ ๋ฆฌ์ฆ˜๋‚œ์ˆ˜ ๊ธฐ๋ฐ˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์‹ค์Šต
7-8์ฃผ์ฐจ6-9์žฅ: ํž™ ์ •๋ ฌ, ํ€ต ์ •๋ ฌ, ์„ ํ˜• ์‹œ๊ฐ„ ์ •๋ ฌ, ์„ ํƒ ๋ฌธ์ œ๊ตฌํ˜„ ๋ฐ ๋น„๊ต ๋ถ„์„
9-10์ฃผ์ฐจ10-13์žฅ: ์ž๋ฃŒ๊ตฌ์กฐ (ํ•ด์‹œ ํ…Œ์ด๋ธ”, BST, Red-Black Tree)๋ฐ์ดํ„ฐ ๊ตฌ์กฐ ํ™œ์šฉ ๋ฌธ์ œ
11-12์ฃผ์ฐจ14-16์žฅ: ๋™์  ํ”„๋กœ๊ทธ๋ž˜๋ฐ, ํƒ์š• ์•Œ๊ณ ๋ฆฌ์ฆ˜, ์•”ํ™”๋œ ๋ถ„์„DP, Huffman coding ์‹ค์Šต
13-15์ฃผ์ฐจ17-19์žฅ: ๊ณ ๊ธ‰ ์ž๋ฃŒ๊ตฌ์กฐB-tree, Disjoint Set ๊ตฌํ˜„
16-18์ฃผ์ฐจ20-25์žฅ: ๊ทธ๋ž˜ํ”„ ์•Œ๊ณ ๋ฆฌ์ฆ˜BFS, DFS, Dijkstra, MST
19-21์ฃผ์ฐจ26-28์žฅ: ๋ณ‘๋ ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜, ์˜จ๋ผ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜, ํ–‰๋ ฌ ์—ฐ์‚ฐํ–‰๋ ฌ ๊ณ„์‚ฐ ๋ฐ ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ
22-24์ฃผ์ฐจ29-35์žฅ: ๋จธ์‹ ๋Ÿฌ๋‹, NP-์™„์ „์„ฑ, ๊ทผ์‚ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ทธ๋ž˜๋””์–ธํŠธ ๋””์„ผํŠธ, NP ๋ฌธ์ œ ํ•ด๊ฒฐ

๐Ÿ“Œ 1์žฅ ์š”์•ฝ: ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์—ญํ• 

  1. ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด๋ž€?

    • ํŠน์ • ์ž…๋ ฅ์„ ๋ฐ›์•„ ์ •ํ•ด์ง„ ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ๊ฒฐ๊ณผ๋ฅผ ์ถœ๋ ฅํ•˜๋Š” ๋ช…ํ™•ํ•œ ์ ˆ์ฐจ.
    • ์˜ˆ: ์ •๋ ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜, ์ตœ๋‹จ ๊ฒฝ๋กœ ์•Œ๊ณ ๋ฆฌ์ฆ˜.
  2. ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์ค‘์š”ํ•œ ์ด์œ 

    • ํšจ์œจ์„ฑ: ๊ฐ™์€ ๋ฌธ์ œ๋ฅผ ํ’€๋”๋ผ๋„ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋”ฐ๋ผ ์†๋„๊ฐ€ ๋‹ค๋ฆ„.
    • ์ž์› ์ ˆ์•ฝ: ๊ณ„์‚ฐ ์†๋„, ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰ ์ตœ์ ํ™”.
    • ๊ธฐ์ˆ  ๋ฐœ์ „: ์ปดํ“จํ„ฐ๊ฐ€ ๋น ๋ฅด๋”๋ผ๋„, ๋น„ํšจ์œจ์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ์ดˆ๋ž˜ํ•จ.
  3. ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๊ธฐ์ˆ  ๋ฐœ์ „

    • ํ•˜๋“œ์›จ์–ด๊ฐ€ ๋ฐœ์ „ํ•ด๋„ ๋น„ํšจ์œจ์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์“ฐ๋ฉด ์„ฑ๋Šฅ์ด ์ œํ•œ๋จ.
    • ์˜ˆ์ œ: ์‚ฝ์ž… ์ •๋ ฌ(O(nยฒ)) vs ๋ณ‘ํ•ฉ ์ •๋ ฌ(O(n log n))
  4. ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์‹ค์ œ ์‘์šฉ

    • ๊ฒ€์ƒ‰ ์—”์ง„(Google) โ†’ ํŽ˜์ด์ง€ ๋žญํ‚น ์•Œ๊ณ ๋ฆฌ์ฆ˜
    • ์œ ์ „์ž ๋ถ„์„ โ†’ ๋™์  ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๊ธฐ๋ฐ˜ ์„œ์—ด ์ •๋ ฌ
    • ๋„คํŠธ์›Œํฌ ๊ฒฝ๋กœ ํƒ์ƒ‰ โ†’ ๋‹ค์ต์ŠคํŠธ๋ผ ์•Œ๊ณ ๋ฆฌ์ฆ˜
  5. ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๋‚œ์ œ

    • NP-์™„์ „ ๋ฌธ์ œ: ๋น ๋ฅธ ํ•ด๊ฒฐ์ฑ…์ด ์—†๋Š” ๋ฌธ์ œ (์˜ˆ: ์™ธํŒ์› ๋ฌธ์ œ)
    • ๋จธ์‹ ๋Ÿฌ๋‹์˜ ๋Œ€๋‘ โ†’ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ค๊ณ„์™€ ๊ฒฐํ•ฉํ•˜์—ฌ ์ตœ์ ํ™”

๐Ÿ”ฅ ๋‹ค์Œ ๋‹จ๊ณ„: 2์žฅ(์‚ฝ์ž… ์ •๋ ฌ, ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋ถ„์„) ๊ณต๋ถ€ ์‹œ์ž‘! ๐Ÿš€
์ด ํ”Œ๋žœ์ด๋‚˜ ์š”์•ฝ์—์„œ ์ˆ˜์ •ํ•˜๊ฑฐ๋‚˜ ๋ณด์™„ํ•˜๊ณ  ์‹ถ์€ ๋ถ€๋ถ„์ด ์žˆ์œผ๋ฉด ๋งํ•ด์ค˜!

Gyver Tc, [2/17/2025 1:24 PM]

๐Ÿ“Œ 2-3์ฃผ์ฐจ ๋‚ด์šฉ ์ •๋ฆฌ (CLRS 4ํŒ, 2-3์žฅ)

๐Ÿ”น 2์žฅ: ์‚ฝ์ž… ์ •๋ ฌ (Insertion Sort)

  1. ์‚ฝ์ž… ์ •๋ ฌ ๊ฐœ๋…

    • ๋ฐฐ์—ด์„ ์ •๋ ฌํ•  ๋•Œ ์•ž์ชฝ๋ถ€ํ„ฐ ํ•˜๋‚˜์”ฉ ์ •๋ ฌ๋œ ์ƒํƒœ๋กœ ์œ ์ง€ํ•˜๋ฉฐ, ์ƒˆ๋กœ์šด ์›์†Œ๋ฅผ ์ ์ ˆํ•œ ์œ„์น˜์— ์‚ฝ์ž…ํ•˜๋Š” ๋ฐฉ์‹
    • ์ง๊ด€์ ์œผ๋กœ ์‚ฌ๋žŒ๋“ค์ด ์ˆซ์ž๋ฅผ ์ •๋ ฌํ•˜๋Š” ๋ฐฉ์‹๊ณผ ์œ ์‚ฌ
    • ์‹œ๊ฐ„ ๋ณต์žก๋„: O(nยฒ) (์ตœ์•…), O(n) (์ตœ์„ , ์ด๋ฏธ ์ •๋ ฌ๋œ ๊ฒฝ์šฐ)
  2. ์‚ฝ์ž… ์ •๋ ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜ (์˜์‚ฌ์ฝ”๋“œ)
    def insertion_sort(arr):
    for i in range(1, len(arr)):
    key = arr[i]
    j = i - 1
    while j >= 0 and arr[j] > key:
    arr[j + 1] = arr[j]
    j -= 1
    arr[j + 1] = key

  1. ์‚ฝ์ž… ์ •๋ ฌ ๋ถ„์„
    • ์ตœ์„ : ์ด๋ฏธ ์ •๋ ฌ๋œ ๊ฒฝ์šฐ, ๋น„๊ต๋งŒ ์ˆ˜ํ–‰ โ†’ O(n)
    • ์ตœ์•…: ์—ญ์ˆœ ์ •๋ ฌ๋œ ๊ฒฝ์šฐ, ๋ชจ๋“  ์›์†Œ๋ฅผ ์ด๋™ํ•ด์•ผ ํ•จ โ†’ O(nยฒ)
    • ์ž‘์€ ๋ฐ์ดํ„ฐ์…‹์—์„œ ํšจ์œจ์ , ํ•˜์ง€๋งŒ ํฐ ๋ฐ์ดํ„ฐ์…‹์—์„œ๋Š” ๋น„ํšจ์œจ์ 

๐Ÿ”น 3์žฅ: ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋ถ„์„ (Analyzing Algorithms)

  1. ์ž…๋ ฅ ํฌ๊ธฐ (Input Size)

    • ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ˆ˜ํ–‰ ์‹œ๊ฐ„์„ ์ธก์ •ํ•  ๋•Œ ์ž…๋ ฅ ํฌ๊ธฐ(n) ์„ ๊ธฐ์ค€์œผ๋กœ ๋ถ„์„
    • ์ •๋ ฌ์˜ ๊ฒฝ์šฐ, ๋ฐฐ์—ด์˜ ๊ธธ์ด(n)
  2. ์ ๊ทผ ํ‘œ๊ธฐ๋ฒ• (Asymptotic Notation)

    • O(๋น…์˜ค, Big-O): ์ตœ์•…์˜ ๊ฒฝ์šฐ ์ˆ˜ํ–‰ ์‹œ๊ฐ„ ์ƒํ•œ
    • ฮฉ(์˜ค๋ฉ”๊ฐ€, Omega): ์ตœ์ƒ์˜ ๊ฒฝ์šฐ ์ˆ˜ํ–‰ ์‹œ๊ฐ„ ํ•˜ํ•œ
    • ฮ˜(์„ธํƒ€, Theta): ํ‰๊ท ์ ์œผ๋กœ ์ˆ˜ํ–‰ ์‹œ๊ฐ„์ด ์ผ์ •ํ•œ ๊ฒฝ์šฐ
  3. ์žฌ๊ท€์  ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋ถ„์„

    • ๋งˆ์Šคํ„ฐ ์ •๋ฆฌ(Master Theorem): ๋ถ„ํ•  ์ •๋ณต ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ˆ˜ํ–‰ ์‹œ๊ฐ„ ๊ณ„์‚ฐ
    • ์˜ˆ: ๋ณ‘ํ•ฉ ์ •๋ ฌ (Merge Sort) โ†’ O(n log n)
  4. ์‹ค์ „ ํ™œ์šฉ

    • ์ž‘์€ ๋ฐ์ดํ„ฐ์…‹ โ†’ ์‚ฝ์ž… ์ •๋ ฌ (O(nยฒ) ํ—ˆ์šฉ ๊ฐ€๋Šฅ)
    • ํฐ ๋ฐ์ดํ„ฐ์…‹ โ†’ ๋ณ‘ํ•ฉ ์ •๋ ฌ, ํ€ต ์ •๋ ฌ ๋“ฑ (O(n log n)) ์‚ฌ์šฉ

๐Ÿ“Œ 2-3์ฃผ์ฐจ ํ•™์Šต ์‹ค์Šต

โœ… [์‹ค์Šต1] ์‚ฝ์ž… ์ •๋ ฌ ๊ตฌํ˜„ ๋ฐ ์‹คํ–‰ ์‹œ๊ฐ„ ๋น„๊ต
โœ… [์‹ค์Šต2] ๋น…์˜ค ๋ถ„์„ ์—ฐ์Šต (O, ฮฉ, ฮ˜ ํ‘œ๊ธฐ ์—ฐ์Šต)
โœ… [์‹ค์Šต3] ๋งˆ์Šคํ„ฐ ์ •๋ฆฌ ์ ์šฉํ•˜์—ฌ ๋ถ„ํ•  ์ •๋ณต ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋ถ„์„

์ด์ œ 4์žฅ(๋ถ„ํ•  ์ •๋ณต)์œผ๋กœ ๋„˜์–ด๊ฐ€๋ฉด ์ข€ ๋” ํšจ์œจ์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ์–ด!
์ดํ•ด ์•ˆ ๋˜๋Š” ๋ถ€๋ถ„์ด๋‚˜ ์ถ”๊ฐ€ ์งˆ๋ฌธ ์žˆ์œผ๋ฉด ์•Œ๋ ค์ค˜ ๐Ÿš€

Gyver Tc, [2/17/2025 1:26 PM]

๐Ÿ“Œ 4-5์ฃผ์ฐจ ๋‚ด์šฉ ์ •๋ฆฌ (CLRS 4ํŒ, 4-5์žฅ)

๋ชฉํ‘œ: ๋ถ„ํ•  ์ •๋ณต ๊ธฐ๋ฒ•์„ ์ดํ•ดํ•˜๊ณ , ํšจ์œจ์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ตฌํ˜„ ๋Šฅ๋ ฅ์„ ํ‚ค์šฐ๊ธฐ


๐Ÿ”น 4์žฅ: ๋ถ„ํ•  ์ •๋ณต (Divide and Conquer)

  1. ๊ฐœ๋…
  • ๋ฌธ์ œ๋ฅผ ์ž‘์€ ํ•˜์œ„ ๋ฌธ์ œ๋กœ ๋‚˜๋ˆ„๊ณ , ๊ฐ๊ฐ์„ ํ•ด๊ฒฐํ•œ ํ›„ ๋ณ‘ํ•ฉํ•˜๋Š” ๋ฐฉ์‹
  • ์žฌ๊ท€์ ์œผ๋กœ ์ ์šฉ๋˜๋ฉฐ, ์‹œ๊ฐ„ ๋ณต์žก๋„๋ฅผ ์ค„์ด๋Š” ํ•ต์‹ฌ ๊ธฐ๋ฒ•
  1. ์ผ๋ฐ˜์ ์ธ ๊ตฌ์กฐ (Divide, Conquer, Combine)
  • Divide: ๋ฌธ์ œ๋ฅผ ์ž‘์€ ๋ถ€๋ถ„์œผ๋กœ ๋‚˜๋ˆˆ๋‹ค.
  • Conquer: ๊ฐ ๋ถ€๋ถ„์„ ์žฌ๊ท€์ ์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค.
  • Combine: ๋ถ€๋ถ„ ๊ฒฐ๊ณผ๋ฅผ ํ•ฉ์ณ ์ตœ์ข… ํ•ด๋ฅผ ๊ตฌํ•œ๋‹ค.
  1. ๋ถ„ํ•  ์ •๋ณต ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์˜ˆ์‹œ
  • ๋ณ‘ํ•ฉ ์ •๋ ฌ (Merge Sort): O(n log n)
  • ํ€ต ์ •๋ ฌ (Quick Sort): O(n log n) (์ตœ์•… O(nยฒ))
  • ์ด์ง„ ํƒ์ƒ‰ (Binary Search): O(log n)
  • Strassen ํ–‰๋ ฌ ๊ณฑ์…ˆ: O(n^2.81)

๐Ÿ“Œ 4์žฅ ์‹ค์Šต: ๋ณ‘ํ•ฉ ์ •๋ ฌ (Merge Sort)

def merge_sort(arr):
if len(arr) <= 1:
return arr

mid = len(arr) // 2
left = merge_sort(arr[:mid])
right = merge_sort(arr[mid:])

return merge(left, right)

def merge(left, right):
result = []
i = j = 0
while i < len(left) and j < len(right):
if left[i] < right[j]:
result.append(left[i])
i += 1
else:
result.append(right[j])
j += 1
result.extend(left[i:])
result.extend(right[j:])
return result

arr = [38, 27, 43, 3, 9, 82, 10]
print("Sorted:", merge_sort(arr))
โœ… O(n log n) ์„ฑ๋Šฅ์„ ๋ณด์žฅํ•˜๋Š” ์•ˆ์ •์ ์ธ ์ •๋ ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜


๐Ÿ”น 5์žฅ: ํ™•๋ฅ ์  ๋ถ„์„๊ณผ ๋žœ๋ค ์•Œ๊ณ ๋ฆฌ์ฆ˜ (Randomized Algorithms)

  1. ๊ฐœ๋…
  • ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์‹คํ–‰ ๊ณผ์ •์—์„œ ๋žœ๋ค์„ฑ์„ ํ™œ์šฉ
  • ์ž…๋ ฅ์— ๋”ฐ๋ผ ๊ฒฐ๊ณผ๊ฐ€ ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ์Œ
  1. ํ™•๋ฅ ์  ๋ถ„์„ ์ ์šฉ ์‚ฌ๋ก€
  • ํ€ต ์ •๋ ฌ (Randomized QuickSort): ํ”ผ๋ฒ—์„ ๋ฌด์ž‘์œ„ ์„ ํƒํ•ด ํ‰๊ท  O(n log n) ์œ ์ง€
  • ๋žœ๋ค ์„ ํƒ (Randomized Selection): O(n) ์‹œ๊ฐ„ ์•ˆ์— k๋ฒˆ์งธ ์ตœ์†Œ๊ฐ’ ์ฐพ๊ธฐ
  • ๋ชฌํ…Œ์นด๋ฅผ๋กœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜: ์ •์น˜๊ฒฝ์ œ์  ๋ณ€์ˆ˜ ๋ฐ˜์˜ํ•œ ํ™˜์œจ ์˜ˆ์ธก(์šฐ๋ฆฌ ์ฝ”๋“œ์ฒ˜๋Ÿผ!)

๐Ÿ“Œ 5์žฅ ์‹ค์Šต: ๋žœ๋ค ํ€ต ์ •๋ ฌ (Randomized QuickSort)

import random

def randomized_quick_sort(arr):
if len(arr) <= 1:
return arr

pivot = random.choice(arr)
left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]
right = [x for x in arr if x > pivot]

return randomized_quick_sort(left) + middle + randomized_quick_sort(right)

arr = [38, 27, 43, 3, 9, 82, 10]
print("Sorted:", randomized_quick_sort(arr))
โœ… ๋ฌด์ž‘์œ„ ํ”ผ๋ฒ— ์„ ํƒ์„ ํ†ตํ•ด ์ตœ์•…์˜ ๊ฒฝ์šฐ(O(nยฒ))๋ฅผ ์ค„์ด๋Š” ์ „๋žต


๐Ÿ“Œ 4-5์ฃผ์ฐจ ์š”์•ฝ

  • 4์žฅ: ๋ถ„ํ•  ์ •๋ณต**์œผ๋กœ ๋ฌธ์ œ๋ฅผ ๋‚˜๋ˆ„์–ด ํ•ด๊ฒฐ โ†’ ๋ณ‘ํ•ฉ ์ •๋ ฌ, ์ด์ง„ ํƒ์ƒ‰
  • **5์žฅ: ํ™•๋ฅ ์  ์•Œ๊ณ ๋ฆฌ์ฆ˜ ํ™œ์šฉ โ†’ ๋žœ๋ค ํ€ต ์ •๋ ฌ, ๋ชฌํ…Œ์นด๋ฅผ๋กœ ๋ฐฉ๋ฒ•

์ด์ œ 6-7์ฃผ์ฐจ (ํž™ ์ •๋ ฌ & ์„ ํ˜• ์‹œ๊ฐ„ ์ •๋ ฌ) ๋กœ ๋„˜์–ด๊ฐˆ ์ค€๋น„๊ฐ€ ๋์–ด!
์ถ”๊ฐ€ ์งˆ๋ฌธ ์žˆ์œผ๋ฉด ๋งํ•ด์ค˜ ๐Ÿš€

Gyver Tc, [2/17/2025 1:28 PM]

๐Ÿ“Œ 6-7์ฃผ์ฐจ ๋‚ด์šฉ ์ •๋ฆฌ (CLRS 4ํŒ, 6-7์žฅ)

๋ชฉํ‘œ: ํšจ์œจ์ ์ธ ์ •๋ ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ•™์Šตํ•˜๊ณ , ํž™(heap) ์ž๋ฃŒ๊ตฌ์กฐ์™€ ์„ ํ˜• ์‹œ๊ฐ„ ์ •๋ ฌ(linear time sorting) ๋ฐฉ๋ฒ•์„ ์ตํžˆ๊ธฐ


๐Ÿ”น 6์žฅ: ํž™ ์ •๋ ฌ (Heap Sort)

  1. ํž™(Heap)์ด๋ž€?

    • ์™„์ „ ์ด์ง„ ํŠธ๋ฆฌ(Complete Binary Tree) ๊ตฌ์กฐ
    • ์ตœ๋Œ€ ํž™(Max Heap): ๋ถ€๋ชจ ๋…ธ๋“œ๊ฐ€ ์ž์‹๋ณด๋‹ค ํฌ๊ฑฐ๋‚˜ ๊ฐ™์Œ
    • ์ตœ์†Œ ํž™(Min Heap): ๋ถ€๋ชจ ๋…ธ๋“œ๊ฐ€ ์ž์‹๋ณด๋‹ค ์ž‘๊ฑฐ๋‚˜ ๊ฐ™์Œ
    • ํž™ ์—ฐ์‚ฐ: ์‚ฝ์ž…(O(log n)), ์‚ญ์ œ(O(log n)), ์ตœ๋Œ€๊ฐ’ ์ฐพ๊ธฐ(O(1))
  2. ํž™ ์ •๋ ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜

    • Heapify: ๋ฐฐ์—ด์„ ํž™ ๊ตฌ์กฐ๋กœ ๋ณ€ํ™˜ (O(n))
    • Extract Max: ์ตœ๋Œ€๊ฐ’์„ ์ถ”์ถœํ•˜๊ณ  ์žฌ์ •๋ ฌ (O(log n))
    • ์ „์ฒด ์ •๋ ฌ: O(n log n)
  3. ํž™ ์ •๋ ฌ ์ฝ”๋“œ ๊ตฌํ˜„ (Max Heap)
    def heapify(arr, n, i):
    largest = i
    left = 2 i + 1
    right = 2
    i + 2

    if left < n and arr[left] > arr[largest]:
        largest = left
    if right < n and arr[right] > arr[largest]:
        largest = right
    
    if largest != i:
        arr[i], arr[largest] = arr[largest], arr[i]
        heapify(arr, n, largest)

    def heap_sort(arr):
    n = len(arr)
    for i in range(n // 2 - 1, -1, -1): # Build heap
    heapify(arr, n, i)

    for i in range(n - 1, 0, -1):  # Extract elements
        arr[i], arr[0] = arr[0], arr[i]
        heapify(arr, i, 0)

    arr = [4, 10, 3, 5, 1]
    heap_sort(arr)
    print("Sorted:", arr)

    โœ… O(n log n) ์„ฑ๋Šฅ์„ ๋ณด์žฅํ•˜๋Š” ๋น„๊ต ๊ธฐ๋ฐ˜ ์ •๋ ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜
    โœ… ๋น ๋ฅธ ์ •๋ ฌ ์†๋„ & ์•ˆ์ •์ ์ธ ์„ฑ๋Šฅ, ํ•˜์ง€๋งŒ ์ œ์ž๋ฆฌ ์ •๋ ฌ(In-place Sorting) ์•„๋‹˜


๐Ÿ”น 7์žฅ: ์„ ํ˜• ์‹œ๊ฐ„ ์ •๋ ฌ (Linear Time Sorting)

  1. ๋น„๊ต ๊ธฐ๋ฐ˜ ์ •๋ ฌ vs ์„ ํ˜• ์‹œ๊ฐ„ ์ •๋ ฌ

    • ๋น„๊ต ๊ธฐ๋ฐ˜ ์ •๋ ฌ: O(n log n) (ํ€ต ์ •๋ ฌ, ๋ณ‘ํ•ฉ ์ •๋ ฌ, ํž™ ์ •๋ ฌ ๋“ฑ)
    • ์„ ํ˜• ์‹œ๊ฐ„ ์ •๋ ฌ: O(n) (๊ณ„์ˆ˜ ์ •๋ ฌ, ๊ธฐ์ˆ˜ ์ •๋ ฌ, ๋ฒ„ํ‚ท ์ •๋ ฌ)
    • ๋น„๊ต ๊ธฐ๋ฐ˜ ์ •๋ ฌ์˜ ์ด๋ก ์  ํ•œ๊ณ„ โ†’ O(n log n) ์ดํ•˜๋กœ ์ค„์ผ ์ˆ˜ ์—†์Œ
    • ์„ ํ˜• ์‹œ๊ฐ„ ์ •๋ ฌ์€ ํŠน์ • ์กฐ๊ฑด์—์„œ ๊ฐ€๋Šฅ (์˜ˆ: ๊ฐ’์ด ์ผ์ • ๋ฒ”์œ„ ๋‚ด์— ์žˆ๋Š” ๊ฒฝ์šฐ)
  2. ๊ณ„์ˆ˜ ์ •๋ ฌ (Counting Sort) - O(n)

    • ๋ฐ์ดํ„ฐ ๊ฐ’์ด ์ œํ•œ๋œ ๋ฒ”์œ„ ๋‚ด์— ์žˆ์„ ๋•Œ ์‚ฌ์šฉ ๊ฐ€๋Šฅ

    • ์Œ์ˆ˜๊ฐ€ ์žˆ์œผ๋ฉด ์ ์šฉ ๋ถˆ๊ฐ€, ์ค‘๋ณต ๊ฐ’ ๋งŽ์„ ๋•Œ ํšจ๊ณผ์ 

    • ์ฝ”๋“œ ๊ตฌํ˜„:
      def counting_sort(arr):
      max_val = max(arr)
      count = [0] (max_val + 1)
      output = [0]
      len(arr)

      for num in arr:
          count[num] += 1
      for i in range(1, len(count)):
          count[i] += count[i - 1]
      
      for num in reversed(arr):
          output[count[num] - 1] = num
          count[num] -= 1
      
      return output

      arr = [4, 2, 2, 8, 3, 3, 1]
      print("Sorted:", counting_sort(arr))

      โœ… O(n) ์„ฑ๋Šฅ์„ ๋ณด์žฅํ•˜์ง€๋งŒ ๋ฒ”์œ„ ์ œํ•œ(์–‘์˜ ์ •์ˆ˜๋งŒ ๊ฐ€๋Šฅ)

  3. ๊ธฐ์ˆ˜ ์ •๋ ฌ (Radix Sort) - O(d * n)

    • ์ž๋ฆฌ์ˆ˜๋ณ„๋กœ ์ •๋ ฌ โ†’ ๊ฐ€์žฅ ์ž‘์€ ์ž๋ฆฟ์ˆ˜๋ถ€ํ„ฐ ์ •๋ ฌ

    • ๋น„๊ต ์—ฐ์‚ฐ ์—†์ด ์ •๋ ฌ ๊ฐ€๋Šฅ

    • ์ฝ”๋“œ ๊ตฌํ˜„:
      def counting_sort_radix(arr, exp):
      n = len(arr)
      output = [0] n
      count = [0]
      10

      for num in arr:
          index = (num // exp) % 10
          count[index] += 1
      
      for i in range(1, 10):
          count[i] += count[i - 1]
      
      for i in reversed(range(n)):
          index = (arr[i] // exp) % 10
          output[count[index] - 1] = arr[i]
          count[index] -= 1
      
      for i in range(n):
          arr[i] = output[i]

      def radix_sort(arr):
      max_val = max(arr)
      exp = 1
      while max_val // exp > 0:
      counting_sort_radix(arr, exp)
      exp *= 10

      arr = [170, 45, 75, 90, 802, 24, 2, 66]
      radix_sort(arr)
      print("Sorted:", arr)

      โœ… ์ž๋ฆฌ์ˆ˜ d๊ฐ€ ์ž‘์„ ๊ฒฝ์šฐ O(n), ์Œ์ˆ˜ ์ง€์› ๋ถˆ๊ฐ€


๐Ÿ“Œ 6-7์ฃผ์ฐจ ์š”์•ฝ

  • 6์žฅ (ํž™ ์ •๋ ฌ):

    • ์™„์ „ ์ด์ง„ ํŠธ๋ฆฌ๋ฅผ ํ™œ์šฉํ•œ ์ •๋ ฌ (O(n log n))
    • ์ตœ์•…์˜ ๊ฒฝ์šฐ์—๋„ ์•ˆ์ •์ ์ธ ์„ฑ๋Šฅ
  • 7์žฅ (์„ ํ˜• ์‹œ๊ฐ„ ์ •๋ ฌ):

    • ๋น„๊ต ๊ธฐ๋ฐ˜ ์ •๋ ฌ์€ O(n log n)์ด ํ•œ๊ณ„
    • ๊ณ„์ˆ˜ ์ •๋ ฌ, ๊ธฐ์ˆ˜ ์ •๋ ฌ ๊ฐ™์€ ์„ ํ˜• ์‹œ๊ฐ„ ์ •๋ ฌ์€ ํŠน์ • ์กฐ๊ฑด์—์„œ O(n) ๊ฐ€๋Šฅ

์ด์ œ 8-9์ฃผ์ฐจ (ํ€ต ์ •๋ ฌ & ์„ ํƒ ์•Œ๊ณ ๋ฆฌ์ฆ˜) ๋กœ ๋„˜์–ด๊ฐˆ ์ค€๋น„๊ฐ€ ๋์–ด!
์ถ”๊ฐ€ ์งˆ๋ฌธ ์žˆ์œผ๋ฉด ๋งํ•ด์ค˜ ๐Ÿš€

Gyver Tc, [2/17/2025 1:32 PM]

๐Ÿ“Œ 8-9์ฃผ์ฐจ ๋‚ด์šฉ ์ •๋ฆฌ (CLRS 4ํŒ, 8-9์žฅ)

๋ชฉํ‘œ: ํ€ต ์ •๋ ฌ(QuickSort)๊ณผ ์„ ํƒ ์•Œ๊ณ ๋ฆฌ์ฆ˜(Selection Algorithm)์„ ํ•™์Šตํ•˜๊ณ , ์‹คํ–‰ ์‹œ๊ฐ„ ๋ถ„์„ ๋ฐ ํšจ์œจ์ ์ธ ์„ ํƒ ๊ธฐ๋ฒ•์„ ์ตํžˆ๊ธฐ


๐Ÿ”น 8์žฅ: ํ€ต ์ •๋ ฌ (QuickSort)

1. ๊ฐœ๋…

  • ๋ถ„ํ•  ์ •๋ณต(Divide & Conquer) ๊ธฐ๋ฒ• ์‚ฌ์šฉ
  • ํ”ผ๋ฒ—(pivot)์„ ๊ธฐ์ค€์œผ๋กœ ์ž‘์€ ๊ฐ’๊ณผ ํฐ ๊ฐ’์„ ๋ถ„ํ• ํ•œ ํ›„, ์žฌ๊ท€์ ์œผ๋กœ ์ •๋ ฌ
  • ํ‰๊ท  O(n log n), ์ตœ์•…์˜ ๊ฒฝ์šฐ O(nยฒ) (ํ”ผ๋ฒ—์ด ์ตœ์†Ÿ๊ฐ’ ๋˜๋Š” ์ตœ๋Œ“๊ฐ’์ผ ๋•Œ)

2. ํ€ต ์ •๋ ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜

  1. ๋ฐฐ์—ด์—์„œ ํ”ผ๋ฒ—์„ ์„ ํƒ
  2. ํ”ผ๋ฒ—์„ ๊ธฐ์ค€์œผ๋กœ ์ž‘์€ ๊ฐ’์€ ์™ผ์ชฝ, ํฐ ๊ฐ’์€ ์˜ค๋ฅธ์ชฝ์œผ๋กœ ๋ถ„ํ• 
  3. ๊ฐ ๋ถ€๋ถ„ ๋ฐฐ์—ด์„ ์žฌ๊ท€์ ์œผ๋กœ ์ •๋ ฌ

3. ํ€ต ์ •๋ ฌ ์ฝ”๋“œ ๊ตฌํ˜„

import random

def quick_sort(arr):
if len(arr) <= 1:
return arr

pivot = random.choice(arr)
left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]
right = [x for x in arr if x > pivot]

return quick_sort(left) + middle + quick_sort(right)

arr = [38, 27, 43, 3, 9, 82, 10]
print("Sorted:", quick_sort(arr))
โœ… ๋žœ๋ค ํ”ผ๋ฒ— ์‚ฌ์šฉ โ†’ ํ‰๊ท  O(n log n) ์œ ์ง€
โœ… ๋น ๋ฅด์ง€๋งŒ, ์•ˆ์ • ์ •๋ ฌ(Stable Sort) ์•„๋‹˜


๐Ÿ”น 9์žฅ: ์„ ํƒ ์•Œ๊ณ ๋ฆฌ์ฆ˜ (Selection Algorithm)

1. ๊ฐœ๋…

  • k๋ฒˆ์งธ ์ตœ์†Œ/์ตœ๋Œ€ ์›์†Œ๋ฅผ ์ฐพ๋Š” ๋ฌธ์ œ
  • ์ •๋ ฌํ•˜์ง€ ์•Š๊ณ ๋„ O(n) ์‹œ๊ฐ„ ๋‚ด์— ํ•ด๊ฒฐ ๊ฐ€๋Šฅ
  • ์˜ˆ์ œ: ์ค‘์œ„์ˆ˜(Median) ์ฐพ๊ธฐ

2. ์ตœ์ ํ™”๋œ ์„ ํƒ ์•Œ๊ณ ๋ฆฌ์ฆ˜

  • ๋žœ๋ค ์„ ํƒ(Randomized Selection): ํ€ต ์ •๋ ฌ๊ณผ ๋น„์Šทํ•œ ๋ฐฉ์‹์ด์ง€๋งŒ, ์žฌ๊ท€์ ์œผ๋กœ ํ•œ์ชฝ๋งŒ ํƒ์ƒ‰ํ•˜์—ฌ O(n) ์„ฑ๋Šฅ ์œ ์ง€
  • Deterministic Selection (Median of Medians): ์ตœ์•…์˜ ๊ฒฝ์šฐ์—๋„ O(n) ๋ณด์žฅ

3. ์„ ํƒ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ฝ”๋“œ ๊ตฌํ˜„

import random

def randomized_select(arr, k):
if len(arr) == 1:
return arr[0]

pivot = random.choice(arr)
left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]
right = [x for x in arr if x > pivot]

if k < len(left):
    return randomized_select(left, k)
elif k < len(left) + len(middle):
    return pivot
else:
    return randomized_select(right, k - len(left) - len(middle))

arr = [38, 27, 43, 3, 9, 82, 10]
k = 3 # 3๋ฒˆ์งธ ์ตœ์†Œ๊ฐ’ ์ฐพ๊ธฐ
print(f"{k}rd smallest element:", randomized_select(arr, k-1))
โœ… ํ‰๊ท  O(n) ์„ฑ๋Šฅ ์œ ์ง€
โœ… ์™„์ „ ์ •๋ ฌ์ด ํ•„์š” ์—†๋Š” ๊ฒฝ์šฐ ์œ ์šฉํ•จ


๐Ÿ“Œ 8-9์ฃผ์ฐจ ์š”์•ฝ

  • 8์žฅ (ํ€ต ์ •๋ ฌ): ํ‰๊ท  O(n log n), ๋žœ๋ค ํ”ผ๋ฒ—์„ ์‚ฌ์šฉํ•˜๋ฉด ์ตœ์•…์˜ ๊ฒฝ์šฐ๋ฅผ ๋ฐฉ์ง€ ๊ฐ€๋Šฅ
  • 9์žฅ (์„ ํƒ ์•Œ๊ณ ๋ฆฌ์ฆ˜): ํŠน์ • k๋ฒˆ์งธ ์›์†Œ๋ฅผ ์ฐพ๋Š” ๋ฌธ์ œ, ์ •๋ ฌ ์—†์ด O(n) ํ•ด๊ฒฐ ๊ฐ€๋Šฅ

์ด์ œ 10-11์ฃผ์ฐจ (ํž™๊ณผ ํŠธ๋ฆฌ ๊ธฐ๋ฐ˜ ์ •๋ ฌ, ํ•ด์‹œ ํ…Œ์ด๋ธ”) ๋กœ ๋„˜์–ด๊ฐˆ ์ค€๋น„๊ฐ€ ๋์–ด! ๐Ÿš€
์ถ”๊ฐ€ ์งˆ๋ฌธ ์žˆ์œผ๋ฉด ๋งํ•ด์ค˜! ๐Ÿ˜Š

Gyver Tc, [2/17/2025 1:33 PM]

๐Ÿ“Œ 10-11์ฃผ์ฐจ ๋‚ด์šฉ ์ •๋ฆฌ (CLRS 4ํŒ, 10-11์žฅ)

๋ชฉํ‘œ: ํž™(Heap)๊ณผ ํŠธ๋ฆฌ(Tree) ๊ธฐ๋ฐ˜ ์ •๋ ฌ ๋ฐ ํ•ด์‹œ(Hash Table) ์ž๋ฃŒ๊ตฌ์กฐ**๋ฅผ ํ•™์Šตํ•˜๊ณ , ํšจ์œจ์ ์ธ ๋ฐ์ดํ„ฐ ๊ฒ€์ƒ‰ ๋ฐ ์ •๋ ฌ ๊ธฐ๋ฒ•์„ ์ตํžˆ๊ธฐ


๐Ÿ”น 10์žฅ: ํž™๊ณผ ํŠธ๋ฆฌ ๊ธฐ๋ฐ˜ ์ •๋ ฌ (Heap & Tree Sorting)

**1. ์ด์ง„ ํž™(Binary Heap)

  • ์™„์ „ ์ด์ง„ ํŠธ๋ฆฌ(Complete Binary Tree) ๊ตฌ์กฐ
  • ์ตœ๋Œ€ ํž™(Max Heap): ๋ถ€๋ชจ ๋…ธ๋“œ๊ฐ€ ์ž์‹๋ณด๋‹ค ํฌ๊ฑฐ๋‚˜ ๊ฐ™์Œ
  • ์ตœ์†Œ ํž™(Min Heap): ๋ถ€๋ชจ ๋…ธ๋“œ๊ฐ€ ์ž์‹๋ณด๋‹ค ์ž‘๊ฑฐ๋‚˜ ๊ฐ™์Œ
  • ์‹œ๊ฐ„ ๋ณต์žก๋„: ์‚ฝ์ž…(O(log n)), ์‚ญ์ œ(O(log n)), ์ตœ๋Œ€๊ฐ’ ์ฐพ๊ธฐ(O(1))

2. ํž™ ์ •๋ ฌ (Heap Sort)

  • ํž™ ์ž๋ฃŒ๊ตฌ์กฐ๋ฅผ ํ™œ์šฉํ•œ ์ •๋ ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜
  • O(n log n) ์„ฑ๋Šฅ์„ ๋ณด์žฅํ•˜๋ฉฐ, ์•ˆ์ •์ ์ธ ์„ฑ๋Šฅ ์ œ๊ณต
  • ์ œ์ž๋ฆฌ ์ •๋ ฌ(In-place Sorting) ๊ฐ€๋Šฅ

๐Ÿ“Œ ํž™ ์ •๋ ฌ ์ฝ”๋“œ ๊ตฌํ˜„

def heapify(arr, n, i):
largest = i
left = 2 i + 1
right = 2
i + 2

if left < n and arr[left] > arr[largest]:
    largest = left
if right < n and arr[right] > arr[largest]:
    largest = right

if largest != i:
    arr[i], arr[largest] = arr[largest], arr[i]
    heapify(arr, n, largest)

def heap_sort(arr):
n = len(arr)
for i in range(n // 2 - 1, -1, -1): # ํž™ ๊ตฌ์„ฑ
heapify(arr, n, i)

for i in range(n - 1, 0, -1):  # ํž™ ์ •๋ ฌ ์ˆ˜ํ–‰
    arr[i], arr[0] = arr[0], arr[i]
    heapify(arr, i, 0)

arr = [4, 10, 3, 5, 1]
heap_sort(arr)
print("Sorted:", arr)
โœ… O(n log n) ์„ฑ๋Šฅ ๋ณด์žฅ
โœ… ํž™ ์ž๋ฃŒ๊ตฌ์กฐ ๊ธฐ๋ฐ˜ ์ •๋ ฌ


๐Ÿ”น 11์žฅ: ํ•ด์‹œ ํ…Œ์ด๋ธ” (Hash Tables)

1. ํ•ด์‹œ ํ…Œ์ด๋ธ” ๊ฐœ๋…

  • ํ‚ค(Key)์™€ ๊ฐ’(Value) ์Œ์„ ์ €์žฅํ•˜๋Š” ์ž๋ฃŒ๊ตฌ์กฐ
  • ํ•ด์‹œ ํ•จ์ˆ˜(Hash Function)**๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ๋ฅผ ๋น ๋ฅด๊ฒŒ ๊ฒ€์ƒ‰
  • **์‹œ๊ฐ„ ๋ณต์žก๋„: ํ‰๊ท  O(1), ์ตœ์•… O(n) (์ถฉ๋Œ ๋ฐœ์ƒ ์‹œ)

2. ํ•ด์‹œ ์ถฉ๋Œ ํ•ด๊ฒฐ ๋ฐฉ๋ฒ•

  • ์ฒด์ด๋‹(Chaining): ๊ฐ™์€ ํ•ด์‹œ ๊ฐ’์ด ์—ฌ๋Ÿฌ ๊ฐœ์ผ ๋•Œ ์—ฐ๊ฒฐ ๋ฆฌ์ŠคํŠธ ์‚ฌ์šฉ
  • ๊ฐœ๋ฐฉ ์ฃผ์†Œ๋ฒ•(Open Addressing): ์ถฉ๋Œ ๋ฐœ์ƒ ์‹œ ๋นˆ ์Šฌ๋กฏ์„ ์ฐพ์•„ ์‚ฝ์ž…

๐Ÿ“Œ ์ฒด์ด๋‹์„ ์ด์šฉํ•œ ํ•ด์‹œ ํ…Œ์ด๋ธ” ๊ตฌํ˜„

class HashTable:
def init(self, size=10):
self.size = size
self.table = [[] for _ in range(size)]

def _hash(self, key):
    return hash(key) % self.size

def insert(self, key, value):
    index = self._hash(key)
    for pair in self.table[index]:
        if pair[0] == key:
            pair[1] = value
            return
    self.table[index].append([key, value])

def get(self, key):
    index = self._hash(key)
    for pair in self.table[index]:
        if pair[0] == key:
            return pair[1]
    return None

def delete(self, key):
    index = self._hash(key)
    self.table[index] = [pair for pair in self.table[index] if pair[0] != key]

ht = HashTable()
ht.insert("apple", 100)
ht.insert("banana", 200)
print("Apple Price:", ht.get("apple"))
ht.delete("apple")
print("Apple Price after deletion:", ht.get("apple"))
โœ… ์ถฉ๋Œ ํ•ด๊ฒฐ์„ ์œ„ํ•œ ์ฒด์ด๋‹ ๊ธฐ๋ฒ• ์ ์šฉ
โœ… ๋น ๋ฅธ ๋ฐ์ดํ„ฐ ๊ฒ€์ƒ‰ (ํ‰๊ท  O(1))


๐Ÿ“Œ 10-11์ฃผ์ฐจ ์š”์•ฝ

  • 10์žฅ (ํž™๊ณผ ํŠธ๋ฆฌ ์ •๋ ฌ):

    • ํž™ ์ •๋ ฌ: O(n log n), ์ตœ๋Œ€/์ตœ์†Œ ํž™ ๊ธฐ๋ฐ˜ ์ •๋ ฌ
    • ์ด์ง„ ํŠธ๋ฆฌ ์ •๋ ฌ: ํšจ์œจ์ ์ธ ๊ฒ€์ƒ‰ ๋ฐ ์ •๋ ฌ ๊ฐ€๋Šฅ
  • 11์žฅ (ํ•ด์‹œ ํ…Œ์ด๋ธ”):

    • ํ•ด์‹œ ํ•จ์ˆ˜ ์‚ฌ์šฉํ•˜์—ฌ O(1) ๊ฒ€์ƒ‰ ๊ฐ€๋Šฅ
    • ์ถฉ๋Œ ํ•ด๊ฒฐ๋ฒ• (์ฒด์ด๋‹, ๊ฐœ๋ฐฉ ์ฃผ์†Œ๋ฒ•) ํ•„์š”

์ด์ œ 12-13์ฃผ์ฐจ (์ด์ง„ ๊ฒ€์ƒ‰ ํŠธ๋ฆฌ & ๋ ˆ๋“œ-๋ธ”๋ž™ ํŠธ๋ฆฌ) ๋กœ ๋„˜์–ด๊ฐˆ ์ค€๋น„๊ฐ€ ๋์–ด! ๐Ÿš€

๐Ÿ“Œ 12-24์ฃผ์ฐจ ์š”์•ฝ ์ •๋ฆฌ (CLRS 4ํŒ, 12-35์žฅ)

๋ชฉํ‘œ: ๊ณ ๊ธ‰ ์ž๋ฃŒ๊ตฌ์กฐ, ๊ทธ๋ž˜ํ”„ ์•Œ๊ณ ๋ฆฌ์ฆ˜, NP-์™„์ „์„ฑ ๋ฐ ๊ทผ์‚ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ•™์Šตํ•˜๊ณ  ์‹ค์ „ ๋ฌธ์ œ ํ•ด๊ฒฐ ๋Šฅ๋ ฅ์„ ํ‚ค์šฐ๊ธฐ


๐Ÿ”น 12-15์ฃผ์ฐจ: ์ด์ง„ ๊ฒ€์ƒ‰ ํŠธ๋ฆฌ & ๊ท ํ˜• ํŠธ๋ฆฌ

12์žฅ: ์ด์ง„ ๊ฒ€์ƒ‰ ํŠธ๋ฆฌ (Binary Search Tree, BST)

โœ… ํŠน์ง•

์™ผ์ชฝ ์„œ๋ธŒํŠธ๋ฆฌ < ๋ฃจํŠธ < ์˜ค๋ฅธ์ชฝ ์„œ๋ธŒํŠธ๋ฆฌ

๊ฒ€์ƒ‰, ์‚ฝ์ž…, ์‚ญ์ œ O(h) (h = ํŠธ๋ฆฌ ๋†’์ด)

โœ… ์—ฐ์‚ฐ ๊ตฌํ˜„ (BST ์‚ฝ์ž…, ์‚ญ์ œ, ํƒ์ƒ‰)

class TreeNode:
def init(self, key):
self.key = key
self.left = self.right = None

class BST:
def init(self):
self.root = None

def insert(self, key):
    def _insert(node, key):
        if not node:
            return TreeNode(key)
        if key < node.key:
            node.left = _insert(node.left, key)
        else:
            node.right = _insert(node.right, key)
        return node

    self.root = _insert(self.root, key)

def search(self, key):
    def _search(node, key):
        if not node or node.key == key:
            return node
        return _search(node.left, key) if key < node.key else _search(node.right, key)

    return _search(self.root, key)

bst = BST()
bst.insert(10)
bst.insert(5)
bst.insert(15)
print("Found:", bst.search(5) is not None)

13์žฅ: ๋ ˆ๋“œ-๋ธ”๋ž™ ํŠธ๋ฆฌ (Red-Black Tree)

โœ… BST์˜ ๋ฌธ์ œ: ๋†’์ด๊ฐ€ O(n)์ผ ๊ฒฝ์šฐ ์„ฑ๋Šฅ ์ €ํ•˜
โœ… ๋ ˆ๋“œ-๋ธ”๋ž™ ํŠธ๋ฆฌ: ๊ท ํ˜• ์œ ์ง€ โ†’ O(log n) ๋ณด์žฅ

โœ… ๊ท ํ˜• ์œ ์ง€ ๊ทœ์น™

  1. ๋ฃจํŠธ๋Š” ํ•ญ์ƒ ๊ฒ€์€์ƒ‰
  1. ๋ชจ๋“  ๋ฆฌํ”„(Null)๋Š” ๊ฒ€์€์ƒ‰
  1. ๋ ˆ๋“œ ๋…ธ๋“œ๋Š” ์—ฐ์†๋  ์ˆ˜ ์—†์Œ
  1. ๋ฃจํŠธ์—์„œ ๋ฆฌํ”„๊นŒ์ง€ ๊ฒ€์€์ƒ‰ ๊ฐœ์ˆ˜ ๋™์ผ

๐Ÿ”น 16-18์ฃผ์ฐจ: ๋™์  ํ”„๋กœ๊ทธ๋ž˜๋ฐ & ํƒ์š• ์•Œ๊ณ ๋ฆฌ์ฆ˜

15์žฅ: ๋™์  ํ”„๋กœ๊ทธ๋ž˜๋ฐ (Dynamic Programming)

โœ… ์ค‘๋ณต ๊ณ„์‚ฐ ๋ฐฉ์ง€ โ†’ O(n) ๋˜๋Š” O(nยฒ)๋กœ ์ตœ์ ํ™” ๊ฐ€๋Šฅ
โœ… ํ”ผ๋ณด๋‚˜์น˜ ์˜ˆ์ œ (Top-Down + Memoization)

def fib(n, memo={}):
if n in memo:
return memo[n]
if n <= 2:
return 1
memo[n] = fib(n-1, memo) + fib(n-2, memo)
return memo[n]

print(fib(50))

โœ… ์ตœ์žฅ ๊ณตํ†ต ๋ถ€๋ถ„ ๋ฌธ์ž์—ด (LCS)

def lcs(X, Y):
m, n = len(X), len(Y)
dp = [[0] * (n + 1) for _ in range(m + 1)]

for i in range(1, m + 1):
    for j in range(1, n + 1):
        if X[i - 1] == Y[j - 1]:
            dp[i][j] = dp[i - 1][j - 1] + 1
        else:
            dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])

return dp[m][n]

print(lcs("AGGTAB", "GXTXAYB"))


๐Ÿ”น 19-21์ฃผ์ฐจ: ๊ทธ๋ž˜ํ”„ ์•Œ๊ณ ๋ฆฌ์ฆ˜

20์žฅ: ๊ทธ๋ž˜ํ”„ ํƒ์ƒ‰ (BFS, DFS)

โœ… ๋„ˆ๋น„ ์šฐ์„  ํƒ์ƒ‰ (BFS)

from collections import deque
def bfs(graph, start):
visited, queue = set(), deque([start])
while queue:
node = queue.popleft()
if node not in visited:
print(node, end=" ")
visited.add(node)
queue.extend(graph[node] - visited)

graph = {0: {1, 2}, 1: {2}, 2: {0, 3}, 3: {3}}
bfs(graph, 2)

โœ… ์ตœ๋‹จ ๊ฒฝ๋กœ (Dijkstra)

import heapq
def dijkstra(graph, start):
pq, distances = [(0, start)], {v: float('inf') for v in graph}
distances[start] = 0
while pq:
cur_dist, node = heapq.heappop(pq)
if cur_dist > distances[node]:
continue
for neighbor, weight in graph[node].items():
distance = cur_dist + weight
if distance < distances[neighbor]:
distances[neighbor] = distance
heapq.heappush(pq, (distance, neighbor))
return distances

graph = {0: {1: 4, 2: 1}, 1: {3: 1}, 2: {1: 2, 3: 5}, 3: {}}
print(dijkstra(graph, 0))


๐Ÿ”น 22-24์ฃผ์ฐจ: NP-์™„์ „์„ฑ๊ณผ ๊ทผ์‚ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜

34์žฅ: NP-์™„์ „ ๋ฌธ์ œ

โœ… P vs NP

P: ๋‹คํ•ญ์‹ ์‹œ๊ฐ„ ๋‚ด ํ•ด๊ฒฐ ๊ฐ€๋Šฅ

NP: ๊ฒ€์ฆ์€ ๋น ๋ฅด์ง€๋งŒ ํ•ด๊ฒฐ์ด ์–ด๋ ค์›€

NP-์™„์ „: ๋ชจ๋“  NP ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ๋Š” ๋ฌธ์ œ (ex. ์™ธํŒ์› ๋ฌธ์ œ, ๋ฐฐ๋‚ญ ๋ฌธ์ œ)

โœ… NP-์™„์ „ ๋ฌธ์ œ ํ•ด๊ฒฐ ๋ฐฉ๋ฒ•

  1. ๋ฐฑํŠธ๋ž˜ํ‚น (Backtracking)
  1. ๋ถ„๊ธฐ ํ•œ์ • (Branch & Bound)
  1. ๊ทผ์‚ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜ (Approximation Algorithms)

โœ… ๋ฐฐ๋‚ญ ๋ฌธ์ œ ๊ทผ์‚ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜ (Greedy)

def knapsack(weights, values, W):
ratio = sorted(zip(weights, values), key=lambda x: x[1]/x[0], reverse=True)
total_value, cur_weight = 0, 0
for w, v in ratio:
if cur_weight + w <= W:
cur_weight += w
total_value += v
else:
fraction = (W - cur_weight) / w
total_value += v * fraction
break
return total_value

print(knapsack([10, 20, 30], [60, 100, 120], 50))

โœ… ๊ทผ์‚ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ NP-์™„์ „ ๋ฌธ์ œ๋ฅผ ๋น ๋ฅด๊ฒŒ ํ•ด๊ฒฐ ๊ฐ€๋Šฅํ•˜์ง€๋งŒ ์ตœ์ ํ•ด๋Š” ์•„๋‹˜

๐Ÿ“Œ 12-24์ฃผ์ฐจ ์ „์ฒด ์š”์•ฝ

๐Ÿ“Œ ์—ฐ์Šต๋ฌธ์ œ ํ’€์ด

1๏ธโƒฃ BST์—์„œ ํŠน์ • ๊ฐ’ ํƒ์ƒ‰ํ•˜๋Š” ์‹œ๊ฐ„ ๋ณต์žก๋„๋Š”?

O(h), ์ตœ์•…์˜ ๊ฒฝ์šฐ O(n) (๊ท ํ˜•์ด ๋งž์ง€ ์•Š์€ ๊ฒฝ์šฐ)

2๏ธโƒฃ ๋‹ค์ต์ŠคํŠธ๋ผ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์‹œ๊ฐ„ ๋ณต์žก๋„๋Š”?

O((V + E) log V) (์šฐ์„ ์ˆœ์œ„ ํ ์‚ฌ์šฉ ์‹œ)

3๏ธโƒฃ NP-์™„์ „ ๋ฌธ์ œ๋Š” ๋‹คํ•ญ์‹ ์‹œ๊ฐ„ ๋‚ด์— ํ’€ ์ˆ˜ ์žˆ์„๊นŒ?
์•Œ๋ ค์ง„ ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ๋Š” ๋ถˆ๊ฐ€๋Šฅ (P=NP ๋ฌธ์ œ ํ•ด๊ฒฐ ์‹œ ๊ฐ€๋Šฅ)

Here's a summary of Chapters 1 and 2 from the algorithms text:

Chapter 1: Introduction to Algorithms

  • Discrete Fourier Transform (DFT): Converts time domain to frequency domain, representing the signal as a weighted sum of sinusoids. Applications include signal processing, data compression, and multiplying large polynomials and integers.
  • Data Structures: Tools for storing and organizing data to facilitate access and modifications. Understanding various data structures and their strengths/limitations is crucial for algorithm design.
  • Techniques: Techniques of algorithm design and analysis are covered to help develop new algorithms, demonstrate correctness, and analyze efficiency. Topics include divide-and-conquer, dynamic programming, and amortized analysis.

Chapter 2: Hard Problems and Alternative Computing Models

  • NP-Complete Problems: Challenges where no efficient algorithms are known. NP-complete problems are important because if an efficient algorithm is found for one, it would work for all. They often appear in real applications, making approximation algorithms valuable.
  • Traveling-Salesperson Problem (TSP): An NP-complete problem where finding the lowest overall distance for delivery trucks from a depot is computationally hard. Efficient approximation algorithms can provide near-optimal solutions.
  • Alternative Computing Models: As processor clock speeds hit physical limits, multicore processors (parallel computers) become essential. Designing parallel algorithms for these systems can improve performance. Online algorithms that handle data arriving over time are also discussed.

These chapters provide foundational concepts for understanding algorithms, data structures, and computational challenges. If you have any specific questions or need more details, feel free to ask! ๐Ÿ˜Š

NP-complete problems have unique characteristics that set them apart from other algorithmic problems:

  1. Efficiency: For most algorithmic problems, efficient (polynomial-time) algorithms exist that can solve the problem quickly. NP-complete problems, however, do not have any known efficient algorithms. Solving an NP-complete problem in a reasonable amount of time is currently considered infeasible.

  2. Verification vs. Solving: While finding a solution to an NP-complete problem might be hard, verifying a given solution is relatively easy. In other words, if someone provides a solution, you can check its correctness quickly, even though finding the solution may take an impractically long time.

  3. Interconnectedness: One remarkable property of NP-complete problems is that they are interconnected. If an efficient algorithm is found for any one NP-complete problem, it can be adapted to solve all other NP-complete problems efficiently as well. This is why finding an efficient solution for any NP-complete problem is so tantalizing.

  4. Real-World Applications: Many NP-complete problems arise frequently in real-world applications, making them highly relevant. For example, the traveling-salesperson problem (TSP), which seeks the shortest possible route visiting a set of locations and returning to the starting point, is an NP-complete problem with practical implications for logistics and delivery services.

  5. Approximation Algorithms: Due to the difficulty in solving NP-complete problems exactly, researchers often develop approximation algorithms. These algorithms provide solutions that are close to optimal but are found much more efficiently. This approach is often used in practice to handle NP-complete problems.

In summary, NP-complete problems stand out due to their computational complexity and their significant impact on both theoretical computer science and practical applications. If you have any more questions or need further clarification, feel free to ask! ๐Ÿ˜Š

์š”์•ฝ

Chapter 1

  • ์ด์‚ฐ ํ‘ธ๋ฆฌ์— ๋ณ€ํ™˜ (DFT): ์‹œ๊ฐ„ ๋„๋ฉ”์ธ์„ ์ฃผํŒŒ์ˆ˜ ๋„๋ฉ”์ธ์œผ๋กœ ๋ณ€ํ™˜ํ•˜๋ฉฐ, ์‹ ํ˜ธ๋ฅผ ์‚ฌ์ธํŒŒ์˜ ๊ฐ€์ค‘ํ•ฉ์œผ๋กœ ํ‘œํ˜„ํ•ฉ๋‹ˆ๋‹ค. ์‹ ํ˜ธ ์ฒ˜๋ฆฌ, ๋ฐ์ดํ„ฐ ์••์ถ•, ํฐ ๋‹คํ•ญ์‹ ๋ฐ ์ •์ˆ˜ ๊ณฑ์…ˆ ๋“ฑ์— ์‘์šฉ๋ฉ๋‹ˆ๋‹ค.
  • ์ž๋ฃŒ ๊ตฌ์กฐ: ๋ฐ์ดํ„ฐ์˜ ์ €์žฅ ๋ฐ ์กฐ์งํ™” ๋ฐฉ๋ฒ•์œผ๋กœ, ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์ ‘๊ทผ ๋ฐ ์ˆ˜์ •์„ ์šฉ์ดํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ๋‹ค์–‘ํ•œ ์ž๋ฃŒ ๊ตฌ์กฐ์˜ ์žฅ๋‹จ์ ์„ ์ดํ•ดํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.
  • ๊ธฐ์ˆ : ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ค๊ณ„ ๋ฐ ๋ถ„์„ ๊ธฐ์ˆ ์„ ๋‹ค๋ฃจ๋ฉฐ, ์ƒˆ๋กœ์šด ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฐœ๋ฐœ, ์ •๋‹ต ์—ฌ๋ถ€ ์ฆ๋ช…, ํšจ์œจ์„ฑ ๋ถ„์„์„ ํฌํ•จํ•ฉ๋‹ˆ๋‹ค. ์ฃผ์ œ๋Š” ๋ถ„ํ• ์ •๋ณต, ๋™์  ํ”„๋กœ๊ทธ๋ž˜๋ฐ, ์•”ํ˜ธ ํ•ด์„ ๋“ฑ์„ ํฌํ•จํ•ฉ๋‹ˆ๋‹ค.

Chapter 2

  • NP-์™„์ „ ๋ฌธ์ œ: ํšจ์œจ์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์•Œ๋ ค์ ธ ์žˆ์ง€ ์•Š์œผ๋ฉฐ, ํ•œ ๋ฌธ์ œ์— ๋Œ€ํ•œ ํšจ์œจ์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๋ฐœ๊ฒฌ๋˜๋ฉด ๋ชจ๋“  NP-์™„์ „ ๋ฌธ์ œ์— ์ ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํ˜„์‹ค ์‘์šฉ์—์„œ๋„ ์ž์ฃผ ๋“ฑ์žฅํ•˜๋ฉฐ, ๊ทผ์‚ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฐœ๋ฐœ์ด ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.
  • ์—ฌํ–‰ํ•˜๋Š” ์™ธํŒ์› ๋ฌธ์ œ (TSP): NP-์™„์ „ ๋ฌธ์ œ๋กœ, ํŠธ๋Ÿญ์˜ ์ตœ๋‹จ ๊ฒฝ๋กœ๋ฅผ ์ฐพ๋Š” ๋ฌธ์ œ์ž…๋‹ˆ๋‹ค. ํšจ์œจ์ ์ธ ๊ทผ์‚ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.
  • ๋Œ€์ฒด ์ปดํ“จํŒ… ๋ชจ๋ธ: ๋ฉ€ํ‹ฐ์ฝ”์–ด ํ”„๋กœ์„ธ์„œ๋ฅผ ํ™œ์šฉํ•œ ๋ณ‘๋ ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ค๊ณ„๊ฐ€ ์ค‘์š”ํ•ด์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ์˜จ๋ผ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์‹œ๊ฐ„์ด ์ง€๋‚จ์— ๋”ฐ๋ผ ์ž…๋ ฅ์ด ๋„์ฐฉํ•˜๋Š” ์ƒํ™ฉ์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค.

์—ฐ์Šต๋ฌธ์ œ ์„ค๋ช…

1.1-1

์ •๋ ฌ์„ ํ•„์š”๋กœ ํ•˜๋Š” ์‹ค์ œ ์˜ˆ๋ฅผ ์„ค๋ช…ํ•˜๊ณ , ๋‘ ์ง€์  ์‚ฌ์ด์˜ ์ตœ๋‹จ ๊ฑฐ๋ฆฌ๋ฅผ ์ฐพ๋Š” ์˜ˆ๋ฅผ ์„ค๋ช…ํ•˜์„ธ์š”.

  • ์ •๋ ฌ ํ•„์š” ์˜ˆ: ์ „์ž ์ƒ๊ฑฐ๋ž˜ ์‚ฌ์ดํŠธ์—์„œ ๋‹ค์–‘ํ•œ ์ƒํ’ˆ์„ ๊ฐ€๊ฒฉ์ˆœ์œผ๋กœ ์ •๋ ฌํ•˜์—ฌ ํ‘œ์‹œํ•  ๋•Œ.
  • ์ตœ๋‹จ ๊ฑฐ๋ฆฌ ์˜ˆ: ๋„์‹œ ๋‚ด ๋‘ ์œ„์น˜ ๊ฐ„์˜ ์ตœ๋‹จ ๊ฒฝ๋กœ๋ฅผ ์ฐพ๊ธฐ ์œ„ํ•ด ๋‚ด๋น„๊ฒŒ์ด์…˜ ์‹œ์Šคํ…œ์„ ์‚ฌ์šฉํ•  ๋•Œ.

1.1-2

์†๋„ ์™ธ์—, ์‹ค์ œ ํ™˜๊ฒฝ์—์„œ ๊ณ ๋ คํ•ด์•ผ ํ•  ๋‹ค๋ฅธ ํšจ์œจ์„ฑ ์ฒ™๋„๋Š” ๋ฌด์—‡์ผ๊นŒ์š”?

  • ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰: ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์‚ฌ์šฉํ•˜๋Š” ๋ฉ”๋ชจ๋ฆฌ์˜ ์–‘.
  • ํ™•์žฅ์„ฑ: ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์˜ ํฌ๊ธฐ๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์ด ์–ด๋–ป๊ฒŒ ๋ณ€ํ•˜๋Š”์ง€.
  • ์‹ ๋ขฐ์„ฑ: ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์ผ๊ด€๋˜๊ฒŒ ์˜ฌ๋ฐ”๋ฅธ ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœํ•  ์ˆ˜ ์žˆ๋Š”์ง€.
  • ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ: ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์‹คํ–‰๋˜๋Š” ๋™์•ˆ ์†Œ๋น„ํ•˜๋Š” ์—๋„ˆ์ง€.

1.1-3

๋ณธ ์ ์ด ์žˆ๋Š” ๋ฐ์ดํ„ฐ ๊ตฌ์กฐ๋ฅผ ์„ ํƒํ•˜์—ฌ ๊ทธ ๊ฐ•์ ๊ณผ ํ•œ๊ณ„๋ฅผ ๋…ผ์˜ํ•˜์„ธ์š”.

  • ์ด์ง„ ํƒ์ƒ‰ ํŠธ๋ฆฌ:
    • ๊ฐ•์ : ์ •๋ ฌ๋œ ๋ฐ์ดํ„ฐ๋ฅผ ๋น ๋ฅด๊ฒŒ ๊ฒ€์ƒ‰, ์‚ฝ์ž… ๋ฐ ์‚ญ์ œ ๊ฐ€๋Šฅ.
    • ํ•œ๊ณ„: ๊ท ํ˜•์ด ๋งž์ง€ ์•Š๋Š” ๊ฒฝ์šฐ, ์„ฑ๋Šฅ ์ €ํ•˜ ๊ฐ€๋Šฅ์„ฑ.

1.1-4

์œ„์—์„œ ์–ธ๊ธ‰ํ•œ ์ตœ๋‹จ ๊ฒฝ๋กœ ๋ฌธ์ œ์™€ ์—ฌํ–‰ํ•˜๋Š” ์™ธํŒ์› ๋ฌธ์ œ๋Š” ์–ด๋–ป๊ฒŒ ๋น„์Šทํ•˜๊ณ  ๋‹ค๋ฅผ๊นŒ์š”?

  • ๋น„์Šทํ•œ ์ : ๋‘ ๋ฌธ์ œ ๋ชจ๋‘ ๊ฒฝ๋กœ ์ตœ์ ํ™”๋ฅผ ๋‹ค๋ฃน๋‹ˆ๋‹ค.
  • ๋‹ค๋ฅธ ์ : ์ตœ๋‹จ ๊ฒฝ๋กœ ๋ฌธ์ œ๋Š” ๋‘ ์ง€์  ๊ฐ„์˜ ์ตœ๋‹จ ๊ฑฐ๋ฆฌ๋ฅผ ์ฐพ๋Š” ๋ฐ˜๋ฉด, ์—ฌํ–‰ํ•˜๋Š” ์™ธํŒ์› ๋ฌธ์ œ๋Š” ์—ฌ๋Ÿฌ ์ง€์ ์„ ๋Œ์•„ ๋‹ค์‹œ ์ถœ๋ฐœ์ ์œผ๋กœ ๋Œ์•„์˜ค๋Š” ์ตœ๋‹จ ๊ฒฝ๋กœ๋ฅผ ์ฐพ๋Š” ๋ฌธ์ œ์ž…๋‹ˆ๋‹ค.

1.1-5

์ตœ๊ณ ์˜ ํ•ด๊ฒฐ์ฑ…์ด ํ•„์š”ํ•œ ์‹ค์ œ ๋ฌธ์ œ๋ฅผ ์ œ์•ˆํ•˜๊ณ , "์ตœ์ƒ์˜" ํ•ด๊ฒฐ์ฑ…์ด ์ถฉ๋ถ„ํ•œ ๋ฌธ์ œ๋ฅผ ์ œ์•ˆํ•˜์„ธ์š”.

  • ์ตœ๊ณ ์˜ ํ•ด๊ฒฐ์ฑ…์ด ํ•„์š”ํ•œ ๋ฌธ์ œ: ํ•ญ๊ณต๊ธฐ ์Šค์ผ€์ค„๋ง - ์ •ํ™•ํ•œ ์ด์ฐฉ๋ฅ™ ์‹œ๊ฐ„์ด ์ค‘์š”.
  • ๊ทผ์‚ฌ ํ•ด๊ฒฐ์ฑ…์ด ์ถฉ๋ถ„ํ•œ ๋ฌธ์ œ: ๋Œ€๊ทœ๋ชจ ์ฐฝ๊ณ ์˜ ๋ฌผ๋ฅ˜ ๊ฒฝ๋กœ ์ตœ์ ํ™” - ์ตœ์ ์— ๊ฐ€๊นŒ์šด ๊ฒฝ๋กœ๊ฐ€ ์ถฉ๋ถ„ํžˆ ์ข‹์Šต๋‹ˆ๋‹ค.

1.1-6

๋•Œ๋กœ๋Š” ์ „์ฒด ์ž…๋ ฅ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์ „์— ์ด์šฉ ๊ฐ€๋Šฅํ•˜์ง€๋งŒ, ๋•Œ๋กœ๋Š” ์ž…๋ ฅ์ด ๋ฏธ๋ฆฌ ์ „๋ถ€ ์ œ๊ณต๋˜์ง€ ์•Š๊ณ  ์‹œ๊ฐ„์ด ์ง€๋‚จ์— ๋”ฐ๋ผ ๋„์ฐฉํ•˜๋Š” ์‹ค์ œ ๋ฌธ์ œ๋ฅผ ์„ค๋ช…ํ•˜์„ธ์š”.

  • ์ „์ฒด ์ž…๋ ฅ์ด ๋ฏธ๋ฆฌ ์ด์šฉ ๊ฐ€๋Šฅํ•œ ๊ฒฝ์šฐ: ์‹œํ—˜ ์ผ์ • ๊ณ„ํš - ๋ชจ๋“  ํ•™์ƒ์˜ ์‹œํ—˜ ์ผ์ •์ด ๋ฏธ๋ฆฌ ์ฃผ์–ด์ง.
  • ์ž…๋ ฅ์ด ์‹œ๊ฐ„์ด ์ง€๋‚จ์— ๋”ฐ๋ผ ๋„์ฐฉํ•˜๋Š” ๊ฒฝ์šฐ: ์˜จ๋ผ์ธ ์‡ผํ•‘๋ชฐ์˜ ์ฃผ๋ฌธ ์ฒ˜๋ฆฌ - ์ฃผ๋ฌธ์ด ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ ‘์ˆ˜๋จ.

๋‹ค๋ฅธ ๊ถ๊ธˆํ•œ ์ ์ด ์žˆ๋‹ค๋ฉด ์–ธ์ œ๋“ ์ง€ ์งˆ๋ฌธํ•˜์„ธ์š”! ๐Ÿ˜Š

Letโ€™s break down and solve each of the exercises and problems step by step.


Exercise 1.2-1

Question:
Give an example of an application that requires algorithmic content at the application level, and discuss the function of the algorithms involved.

Answer:
An example of such an application is Google Maps.

  • Function of Algorithms:
    Google Maps uses algorithms for:
    1. Shortest Path Calculation: Dijkstra's algorithm or A* algorithm is used to find the shortest path between two locations.
    2. Traffic Prediction: Machine learning algorithms analyze historical and real-time traffic data to predict congestion.
    3. Route Optimization: Algorithms optimize routes for multiple stops (e.g., delivery routes).
    4. Geocoding: Algorithms convert addresses into geographic coordinates.

Exercise 1.2-2

Question:
Suppose that for inputs of size ( n ) on a particular computer, insertion sort runs in ( 8n^2 ) steps and merge sort runs in ( 64n \log n ) steps. For which values of ( n ) does insertion sort beat merge sort?

Answer:
We need to find the values of ( n ) for which:
[
8n^2 < 64n \log n
]
Simplify the inequality:
[
n^2 < 8n \log n \
n < 8 \log n
]
To solve this, we test values of ( n ):

( n )( 8 \log n )Comparison (( n < 8 \log n ))
10( 1 < 0 ) โ†’ False
28( 2 < 8 ) โ†’ True
10( 8 \log 10 \approx 18.4 )( 10 < 18.4 ) โ†’ True
50( 8 \log 50 \approx 45.2 )( 50 < 45.2 ) โ†’ False

By testing further, we find that insertion sort beats merge sort for ( n \leq 43 ).


Exercise 1.2-3

Question:
What is the smallest value of ( n ) such that an algorithm whose running time is ( 100n^2 ) runs faster than an algorithm whose running time is ( 2^n ) on the same machine?

Answer:
We need to find the smallest ( n ) for which:
[
100n^2 < 2^n
]
Test values of ( n ):

( n )( 100n^2 )( 2^n )Comparison (( 100n^2 < 2^n ))
11002( 100 < 2 ) โ†’ False
1010,0001,024( 10,000 < 1,024 ) โ†’ False
1522,50032,768( 22,500 < 32,768 ) โ†’ True

By testing further, we find that the smallest ( n ) is 15.


Problem 1-1: Comparison of Running Times

Question:
For each function ( f(n) ) and time ( t ) in the following table, determine the largest size ( n ) of a problem that can be solved in time ( t ), assuming that the algorithm to solve the problem takes ( f(n) ) microseconds.

Part 1: Illustration of Insertion Sort

Let's illustrate the operation of Insertion Sort on the array initially containing the sequence:
โŸจ31, 41, 59, 26, 41, 58โŸฉ.

Insertion Sort Algorithm

Insertion Sort works by iteratively inserting each element into its correct position in the sorted portion of the array.


Step-by-Step Execution

  1. Initial Array:
    [31, 41, 59, 26, 41, 58]

  2. After 1st Iteration (i = 1):

    • The first element 31 is already in the sorted portion.
    • Sorted portion: [31]
    • Array: [31, 41, 59, 26, 41, 58]
  3. After 2nd Iteration (i = 2):

    • Insert 41 into the sorted portion [31].
    • 41 is greater than 31, so it stays in place.
    • Sorted portion: [31, 41]
    • Array: [31, 41, 59, 26, 41, 58]
  4. After 3rd Iteration (i = 3):

    • Insert 59 into the sorted portion [31, 41].
    • 59 is greater than 41, so it stays in place.
    • Sorted portion: [31, 41, 59]
    • Array: [31, 41, 59, 26, 41, 58]
  5. After 4th Iteration (i = 4):

    • Insert 26 into the sorted portion [31, 41, 59].
    • 26 is smaller than 59, 41, and 31, so it moves to the front.
    • Sorted portion: [26, 31, 41, 59]
    • Array: [26, 31, 41, 59, 41, 58]
  6. After 5th Iteration (i = 5):

    • Insert 41 into the sorted portion [26, 31, 41, 59].
    • 41 is equal to the last 41, so it stays in place.
    • Sorted portion: [26, 31, 41, 41, 59]
    • Array: [26, 31, 41, 41, 59, 58]
  7. After 6th Iteration (i = 6):

    • Insert 58 into the sorted portion [26, 31, 41, 41, 59].
    • 58 is smaller than 59, so it moves before 59.
    • Sorted portion: [26, 31, 41, 41, 58, 59]
    • Array: [26, 31, 41, 41, 58, 59]

Final Sorted Array:

[26, 31, 41, 41, 58, 59]


Part 2: Loop Invariant for SUM-ARRAY

The SUM-ARRAY procedure computes the sum of the numbers in the array A[1 : n]. Here is the procedure:

SUM-ARRAY(A, n)
sum = 0
for i = 1 to n
sum = sum + A[i]
return sum

Loop Invariant

A loop invariant is a condition that is true before and after each iteration of the loop. For the SUM-ARRAY procedure, the loop invariant is:

At the start of each iteration of the for loop, the variable sum contains the sum of the elements in the subarray A[1 : i-1].


Proof of Correctness Using Loop Invariant

  1. Initialization:

    • Before the first iteration (i = 1), the subarray A[1 : 0] is empty.
    • The variable sum is initialized to 0, which is the sum of an empty array.
    • Thus, the loop invariant holds before the first iteration.
  2. Maintenance:

    • Assume the loop invariant holds at the start of the i-th iteration, i.e., sum contains the sum of A[1 : i-1].
    • During the i-th iteration, sum is updated to sum + A[i].
    • After the update, sum contains the sum of A[1 : i].
    • Thus, the loop invariant holds at the start of the next iteration.
  3. Termination:

    • The loop terminates when i = n + 1.
    • At this point, the loop invariant states that sum contains the sum of A[1 : n].
    • The procedure returns sum, which is the correct sum of all elements in the array.

Conclusion

The loop invariant ensures that the SUM-ARRAY procedure correctly computes the sum of the numbers in the array A[1 : n]. By the properties of initialization, maintenance, and termination, the procedure is proven to be correct.

Gyver Tc, [2/17/2025 1:47 PM]

Part 1: Insertion Sort for Monotonically Decreasing Order

To modify the Insertion Sort algorithm to sort in monotonically decreasing order, we need to change the comparison condition. Instead of inserting elements into the correct position in an increasing sequence, we insert them into the correct position in a decreasing sequence.

Pseudocode for Decreasing Insertion Sort

INSERTION-SORT-DECREASING(A)
for j = 2 to A.length
key = A[j]
i = j - 1
// Insert A[j] into the sorted sequence A[1 : j-1] in decreasing order
while i > 0 and A[i] < key
A[i + 1] = A[i]
i = i - 1
A[i + 1] = key

Explanation

  • The outer loop iterates over each element in the array.
  • The inner loop shifts elements to the right until the correct position for key is found in the decreasing sequence.
  • The condition A[i] < key ensures that the sequence remains monotonically decreasing.

Part 2: Linear Search Pseudocode and Correctness Proof

LINEAR-SEARCH(A, x)
for i = 1 to A.length
if A[i] == x
return i
return NIL

Loop Invariant

The loop invariant for the LINEAR-SEARCH algorithm is:

At the start of each iteration of the for loop, the element x does not appear in the subarray A[1 : i-1].


Proof of Correctness Using Loop Invariant

  1. Initialization:

    • Before the first iteration (i = 1), the subarray A[1 : 0] is empty.
    • By definition, x does not appear in an empty array.
    • Thus, the loop invariant holds before the first iteration.
  2. Maintenance:

    • Assume the loop invariant holds at the start of the i-th iteration, i.e., x does not appear in A[1 : i-1].
    • During the i-th iteration, the algorithm checks if A[i] == x.
      • If A[i] == x, the algorithm returns i, and the loop terminates.
      • If A[i] != x, the loop invariant holds for the next iteration (i + 1).
    • Thus, the loop invariant is maintained.
  3. Termination:

    • The loop terminates when either x is found or i exceeds A.length.
    • If x is found, the algorithm returns the correct index.
    • If x is not found, the algorithm returns NIL, which is correct because the loop invariant ensures that x does not appear in A[1 : A.length].

Part 3: Adding Two n-Bit Binary Integers

The problem involves adding two n-bit binary integers stored in arrays A and B and storing the result in an (n + 1)-bit array C.

Pseudocode for ADD-BINARY-INTEGERS

ADD-BINARY-INTEGERS(A, B, n)
let C[0 : n] be a new array
carry = 0
for i = n - 1 downto 0
sum = A[i] + B[i] + carry
C[i + 1] = sum % 2 // Store the least significant bit
carry = sum // 2 // Update the carry
C[0] = carry
return C

Explanation

  1. Initialization:

    • Create a new array C of size n + 1 to store the result.
    • Initialize carry to 0.
  2. Loop:

    • Iterate from the least significant bit (LSB) to the most significant bit (MSB).
    • Compute the sum of A[i], B[i], and carry.
    • Store the LSB of the sum in C[i + 1].
    • Update the carry for the next iteration.
  3. Final Carry:

    • After the loop, store the final carry in C[0].
  4. Return:

    • Return the array C containing the sum.

Example

Input:
A = [1, 0, 1, 1] (binary number 1011, decimal 11)
B = [1, 1, 0, 1] (binary number 1101, decimal 13)
n = 4

Execution:

  • Iteration 1: sum = 1 + 1 + 0 = 2, C[4] = 0, carry = 1
  • Iteration 2: sum = 1 + 0 + 1 = 2, C[3] = 0, carry = 1
  • Iteration 3: sum = 0 + 1 + 1 = 2, C[2] = 0, carry = 1
  • Iteration 4: sum = 1 + 1 + 1 = 3, C[1] = 1, carry = 1
  • Final Carry: C[0] = 1

Output:
C = [1, 1, 0, 0, 0] (binary number 11000, decimal 24)


Summary

  1. Insertion Sort for Decreasing Order: Modify the comparison condition to sort in decreasing order.
  2. Linear Search: Use a loop invariant to prove correctness.
  3. Binary Addition: Implement a procedure to add two n-bit binary integers and store the result in an (n + 1)-bit array.

Shortest path algorithms have a wide range of practical applications across various fields. Here are some key examples:

  1. Navigation Systems:

    • GPS and Maps: Used in GPS devices and mapping applications (like Google Maps) to find the quickest route between two locations, taking into account traffic conditions and road networks.
  2. Network Routing:

    • Internet Routing: Determines the most efficient path for data packets to travel across the internet, ensuring faster and more reliable communication.
    • Telecommunications: Optimizes the routing of phone calls and messages through networks to minimize latency and costs.
  3. Transportation and Logistics:

    • Public Transportation: Helps in planning the shortest and most efficient routes for buses, trains, and other public transit systems.
    • Delivery Services: Used by companies like FedEx and UPS to optimize delivery routes, reducing fuel consumption and delivery times.
  4. Robotics and Autonomous Vehicles:

    • Robot Navigation: Enables robots to find the shortest path in an environment, avoiding obstacles and optimizing their movements.
    • Self-Driving Cars: Assists in route planning and navigation, ensuring safe and efficient travel.
  5. Supply Chain Management:

    • Warehouse Operations: Optimizes the movement of goods within warehouses to ensure quick and efficient retrieval and storage.
    • Inventory Distribution: Determines the most efficient routes for distributing products from warehouses to retail stores.
  6. Emergency Response:

    • First Responders: Helps emergency vehicles (ambulances, fire trucks, police) find the quickest route to an emergency site.
    • Evacuation Planning: Assists in creating evacuation plans for buildings or areas during emergencies, ensuring safe and efficient evacuation routes.
  7. Social Networks:

    • Friend Recommendations: Analyzes the shortest path between individuals in a social network to suggest potential friends or connections.
    • Influence Spread: Studies how information or influence spreads through a network, identifying key nodes for efficient dissemination.
  8. Urban Planning:

    • Infrastructure Development: Assists in planning the layout of roads, bridges, and public transportation systems for optimal connectivity and efficiency.
  9. Healthcare:

    • Patient Transport: Optimizes routes for transporting patients within large hospital complexes.
    • Medical Supply Distribution: Ensures efficient delivery of medical supplies to healthcare facilities.

These applications showcase the versatility and importance of shortest path algorithms in solving real-world problems efficiently. If you have any more questions or need further details, feel free to ask! ๐Ÿ˜Š

profile
๋” ๋‚˜์€ ์„ธ์ƒ์€ ๊ฐ€๋Šฅํ•˜๋‹ค๋ฅผ ๋ฏฟ๊ณ  ์‹ค์ฒœํ•˜๋Š” ํ™œ๋™๊ฐ€

0๊ฐœ์˜ ๋Œ“๊ธ€