
import os
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D
from keras.utils import np_utils
from tensorflow.keras.preprocessing.image import load_img, img_to_array
train_dir = 'train/'
test_dir = 'test/'
num_classes = 2
img_width, img_height = 224, 224
def preprocess_image(image_path):
img = load_img(image_path, target_size=(img_width, img_height))
x = img_to_array(img)
x = np.expand_dims(x, axis=0)
x /= 255.
return x
train_data = []
train_labels = []
test_data = []
test_labels = []
for subdir, dirs, files in os.walk(train_dir):
for file in files:
img_path = os.path.join(subdir, file)
img = preprocess_image(img_path)
label = int(subdir.split('/')[-1])
train_data.append(img)
train_labels.append(label)
for subdir, dirs, files in os.walk(test_dir):
for file in files:
img_path = os.path.join(subdir, file)
img = preprocess_image(img_path)
label = int(subdir.split('/')[-1])
test_data.append(img)
test_labels.append(label)
train_data = np.vstack(train_data)
train_labels = np.array(train_labels)
test_data = np.vstack(test_data)
test_labels = np.array(test_labels)
train_labels = np_utils.to_categorical(train_labels, num_classes)
test_labels = np_utils.to_categorical(test_labels, num_classes)
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same', activation='relu', input_shape=train_data.shape[1:]))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same', activation='relu'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
history = model.fit(train_data,train_labels, batch_size=128, epochs=10)
score = model.evaluate(test_data, test_labels, verbose=0)
print(score)
print('!!',model.predict(test_data))
너무 좋은 글이네요. 공유해주셔서 감사합니다.