5주차: 5/29/2023 - 6/4/2023
# requirements
import pandas as pd
from urllib.request import urlopen
from bs4 import BeautifulSoup
url = "https://www.imdb.com/chart/top/"
response = urlopen(url)
# response.status
soup = BeautifulSoup(response, "html.parser")
print(soup.prettify())
# Movie title tag
soup.find_all("td", "titleColumn")
# 1
soup.find_all("td", "titleColumn")[0].a.string
# 2
soup.select(".titleColumn")[0].find("a").text
# 3
soup.select(".titleColumn")[0].select_one("a").get_text()
# Movie ratings tag
soup.select("td.ratingColumn.imdbRating")
soup.select("td.ratingColumn.imdbRating")[0].text.strip()
len(soup.find_all("td", "titleColumn")), len(soup.select("td.ratingColumn.imdbRating"))
# Movie title list
end = len(soup.find_all("td", "titleColumn"))
movie_name = []
for n in range(0, end):
movie_name.append(
soup.find_all("td", "titleColumn")[n].a.string
)
movie_name
movie_name = [soup.select(".titleColumn")[n].a.text for n in range(0, end)]
movie_name
# Movie ratings list
end = len(soup.select("td.ratingColumn.imdbRating"))
movie_rating = [soup.select("td.ratingColumn.imdbRating")[n].text.strip() for n in range(0, end)]
movie_rating
# Check the size of data
len(movie_name), len(movie_rating)
import time
from tqdm import tdqm
movie_date = []
movie_name = []
movie_rating = []
for today in tqdm(date):
url = "https://www.imdb.com/chart/top/"
response = urlopen(url.format(date=today.strftime("%Y%m%d")))
soup = BeautifulSoup(response, "html.parser")
end = len(soup.select("td.ratingColumn.imdbRating"))
movie_date.extend([today for _ in range(0, end)])
movie_name.extend([soup.select(".titleColumn")[n].find("a").text for n in range(0, end)])
movie_rating.extend([soup.select("td.ratingColumn.imdbRating")[n].text.strip() for n in range(0, end)])
time.sleep(0.5)
movie = pd.DataFrame({
"name": movie_name,
"rating": movie_rating
})
movie.tail()
movie["rating"] = movie["rating"].astype(float)
# Save data
movie.to_csv(
"../data/03. movie_data.csv", sep=",", encoding="utf-8"
)
import numpy as np
import pandas as pd
movie = pd.read_csv("../data/03. movie_data.csv", index_col=0)
movie.tail()
# pivot table
movie_unique = pd.pivot_table(data=movie, index="name", aggfunc=np.sum)
movie_unique
movie_best = movie_unique.sort_values(by="rating", ascending=False)
movie_best.head()
tmp = movie.query("name == ['Daeboo']")
tmp
import matplotlib.pyplot as plt
from matplotlib import rc
rc("font", family="Malgun Gothic")
get_ipython().run_line_magic("matplotlib", "inline")
plt.figure(figsize=(20, 8))
plt.plot(tmp["date"], tmp["rating"])
plt.title("Rating per date")
plt.xlabel("Date")
plt.ylabel("Rating")
plt.xticks(rotation="vertical")
plt.legend(labels=["Rating trend"], loc="best")
plt.grid(True)
plt.show()
movie_pivot = pd.pivot_table(data=movie, index="date", columns="name", values="rating")
movie_pivot.head()
movie_pivot.to_excel("../data/03. movie_pivot.xlsx")
import platform
import seaborn as sns
from matplotlib import font_manager, rc
path = "C:/Windows/Fonts/malgun.ttf"
if platform.system() == "Darwin":
rc("font", family="Arial Unicode MS")
elif platform.system() == "Windows":
font_name = font_manager.FontProperties(fname=path).get_name()
rc("font", family=font_name)
else:
print("Unknown system")
target_col = ["쇼생크 탈출", "다크 나이트", "Daeboo", "12명의 성난 사람들", "The Godfather Part II"]
plt.figure(figsize=(20, 8))
plt.title("Rating per date")
plt.xlabel("Date")
plt.ylabel("Rating")
plt.xticks(rotation="vertical")
plt.tick_params(bottom="off", labelbottom="off")
plt.plot(movie_pivot[target_col])
plt.legend(target_col, loc="best")
plt.grid(True)