Dataset
- Dataset size: 3000 images
- Each class: 500 images
- Train data(2100개) : Test data(900개) = 7 : 3
- Classes
- Car, Threewheel, Bus, Truck, Motorbike, Van
- 출처: kaggle
YOLOv5
CASE 1
- image size: 500
- batch size: 4
- epochs: 15
- weights: yolov5s.pt

- precision: 0.954, recall: 0.929, mAP50: 0.979, mAP50-95: 0.847
CASE 2
- image size: 640
- batch size: 8
- epochs: 50
- weights: yolov5s.pt

- precision: 0.956, recall: 0.935, mAP50: 0.974, mAP50-95: 0.869
CASE 3
- image size: 416
- batch size: 16
- epochs: 50
- weights: yolov5s.pt

- precision: 0.982, recall: 0.946, mAP50: 0.981, mAP50-95: 0.887
YOLOv7
CASE 4
- image size: 500
- batch size: 4
- epochs: 15
- weights: yolov7.pt

- precision: 0.975, recall: 0.943, mAP50: 0.981, mAP50-95: 0.871
모델 테스트(CASE 2)

좋은 정보 감사합니다