데이터셋: AIHUB 생활폐기물 이미지 데이터
클래스: [비닐, 유리병, 종이, 캔, 페트병, 플라스틱]
사용 데이터: 클래스별 100개의 데이터 랜덤으로 샘플링
주요 라이브러리: torch==2.0.0+cu11.8
from torch.utils.data import Dataset
from torchvision.io import read_image
from tqdm import tqdm
import torch
import torchvision.transforms as transforms
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
import os
device = torch.device('cuda')
data_path = 'data'
train_path = os.path.join(data_path, 'train')
val_path = os.path.join(data_path, 'val')
test_path = os.path.join(data_path, 'test')
img_width = 640
img_height = 640
batch_size = 32
class CustomImageDataset(Dataset):
def __init__(self, data_path):
self.data_dir = data_path
self.images = [x for x in os.listdir(self.data_dir) if x.endswith('.jpg')]
self.labels = [int(x.split('_')[0]) for x in os.listdir(self.data_dir) if x.endswith('.Json')]
self.transform = transforms.Compose([transforms.Resize(size=(img_width, img_height), antialias=True)])
self.target_transform = None
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
image_path = os.path.join(self.data_dir, self.images[idx])
image = read_image(image_path) / 255.0
label = self.labels[idx]
if self.transform:
image = self.transform(image)
if self.target_transform:
label = self.target_transform(label)
return image, label
train_dataset = CustomImageDataset(train_path)
val_dataset = CustomImageDataset(val_path)
test_dataset = CustomImageDataset(test_path)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size)
val_loader = torch.utils.data.DataLoader(dataset=val_dataset, batch_size=batch_size)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 64, 3, padding='same')
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(64, 32, 3, padding='same')
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(32*160*160, 1024)
self.fc2 = nn.Linear(1024, 6)
def forward(self, x):
x = self.pool(torch.relu(self.conv1(x)))
x = self.pool(torch.relu(self.conv2(x)))
x = x.view(x.shape[0], -1)
x = torch.relu(self.fc1(x))
x = nn.Dropout(0.3)(x)
x = self.fc2(x)
return x
net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters())
for epoch in tqdm(range(10)):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
inputs.to(device)
labels.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print(f'[{epoch + 1}, {i + 1}] loss: {running_loss / 100:.3f}')
running_loss = 0.0
print('Finished Training')
correct = 0
total = 0
with torch.no_grad():
for data in tqdm(test_loader):
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Test accuracy: {100 * correct / total:.2f}%')
Test accuracy: 21.67%