# recall

17개의 포스트
post-thumbnail

Precision과 Recall

자신이 어떤 기술을 개발하였다. 예를 들어 이미지에서 사람을 자동으로 찾아주는 영상 인식 기술이라고 하자. 이 때, 사람들에게 "이 기술의 검출율은 99.99%입니다"라고 말하면 사람들은 "오우...!!!" 하면서 감탄할 것이다. 반면에 "이 기술의 검출율은 50%입니

2022년 7월 17일
·
0개의 댓글
·
post-thumbnail

AIB: N223 Evaluation Metrics for Classification

TP, TN, FP, FN으로 이루어진 매트릭스분류모델의 성능 평가지표실제 양성인데 검사 결과도 양성잘 맞춰서, Positive(1)를 잡아냈다.올바르게 1을 1이라고 예측. 찐양성, 찐양성실제 음성인데 검사 결과도 음성잘 맞춰서 Negative(0)를 잡아냈다.실제

2022년 3월 4일
·
0개의 댓글
·
post-thumbnail

[ML/DL] 모델성능평가 F1-score

사이킷런에는 모델의 성능을 평가할 수 있는 여러 다양한 라이브러리들이 존재한다. binary classification도 가능하지만 multi class 인 경우에도 파라미터를 설정하면 평가할 수 있다.올바르게 예측된 데이터의 수를 전체 데이터의 수로 나눈 값모델이 T

2022년 2월 3일
·
0개의 댓글
·
post-thumbnail

Eval Metrics

confusion_matrixconfusion_plotpr curveroc-auc

2021년 12월 26일
·
0개의 댓글
·

Macro F1 Score

Macro F1 Score에 대해 설명합니다.

2021년 12월 25일
·
0개의 댓글
·

[TIL] 210823

테크니컬 글쓰기 특강 듣기 sprint challenge인프런 ROC, AUC 강의 끝까지 다 듣기 트리모델과 선형모델을 비교해봤을때 어떤점이 더 좋았나요?간결하다 원핫인코딩보다 오디널 인코딩 쓸 수 있어서 좋았다표준화 안해도 되서 좋았다 특성선택을 알아서 해줘서 편

2021년 8월 23일
·
0개의 댓글
·
post-thumbnail

Precision&Recall

범죄자라고 판단한 사람들 중 진짜 범죄자인 사람이 몇명인가의 비율실제 범죄자들 중 범죄자들 중 범죄자라고 판단한 사람이 몇명인가의 비율Refhttps://danthetech.netlify.app/DataScience/evaluation-metrics-for-r

2021년 8월 19일
·
0개의 댓글
·
post-thumbnail

분류성능평가지표 - Precision(정밀도), Recall(재현율)

Precision(정밀도), Recall(재현율)을 알아보자!

2021년 4월 15일
·
0개의 댓글
·

Metric

Evaluation Metrics

2021년 4월 14일
·
0개의 댓글
·
post-thumbnail

Evaluation Metrics in Machine Learning - Precision / Recall

Precision and Recall are evaluation metrics which emphasize the performance in positive data-set. Precision = (TP) / (TP + FP) ratio of correctly pr

2021년 1월 13일
·
0개의 댓글
·

피마 인디언 당뇨병 예측 데이터 세트로 머신러닝 평가하기

이번에는 Kaggle의 피마 인디언 당뇨병(Pima Indian Diabetes) 데이터 세트를 이용해 당뇨병 여부를 판단하는 머신러닝 예측 모델을 수립하고, 저번에 작성한 평가 지표를 적용해 보자.

2020년 12월 27일
·
1개의 댓글
·

머신러닝 평가(Evaluation)

머신러닝은 데이터 가공/변환, 모델 학습/예측 그리고 평가의 프로세서로 구성된다.

2020년 12월 26일
·
0개의 댓글
·

분류기 평가 지표 간단 정리

언제나 헷갈리는 정밀도, 정확도, 재현율 머신러닝에 입문한지 얼마 안되는 초짜라 분류기의 평가 지표는 언제나 헷갈립니다. 익숙해졌다고 또는 다 외웠다고 자만(근자감)했을때 누군가 물어보면 어버버하면서 제대로된 설명이나 답을 못하는 경우가 많았습니다. 이 글을 쓰는

2020년 6월 12일
·
2개의 댓글
·
post-thumbnail

(번역) 머신러닝 모델의 평가지표

과연 어떻게 머신러닝 모델의 완성도를 측정할까? 언제 학습(train)과 학습평가(evaluation)를 끝내고, 완성했다고 말할 수 있을까? 이 글을 통해, 이 질문에 대한 답을 찾아보자.

2020년 4월 29일
·
0개의 댓글
·
post-thumbnail

분류 모델의 평가 방법

분류모델의 평가방법에 대해 알아봅시다.정확도만 가지고 분류 모델을 평가하면 안될까?(정확도: 전체의 데이터 중에서 올바르게 예측한 비율)결론은 아니다.다음과 같은 예시가 있다.전체 데이터에서 90%는 고양이, 10%는 강아지다.데이터가 뭐든지 상관없이 전부 모든데이터를

2020년 4월 11일
·
0개의 댓글
·