함수
def plotSineWave(amp, freq, endTime, sampleTime, startTime, bias): ''' plot sine wave y = a sin(2 pi f t + t_0) + b ''' pass
==>
'''
docstring'''
def plotSinWave(amp, freq, endTime, sampleTime, startTime, bias):
"""
plot sine wave
y = a sin(2 pi f t + t_0) + b
"""
time = np.arange(startTime, endTime, sampleTime)
result = amp * np.sin(2 * np.pi * freq * time + startTime) + bias
plt.figure(figsize=(12, 6))
plt.plot(time, result)
plt.grid(True)
plt.xlabel("time")
plt.ylabel("sin")
plt.title(str(amp) + "*sin(2*pi" + str(freq) + "*t+" + str(startTime) + ")+" + str(bias))
plt.show()
plotSinWave(2, 1, 10, 0.01, 0.5, 0)
def plotSinWave(**kwargs):
"""
plot sine wave
y = a sin(2 pi f t + t_0) + b
"""
endTime = kwargs.get("endTime", 1)
sampleTime = kwargs.get("sampleTime", 0.01)
amp = kwargs.get("amp", 1)
freq = kwargs.get("freq", 1)
startTime = kwargs.get("startTime", 0)
bias = kwargs.get("bias", 0)
figsize = kwargs.get("figsize", (12, 6))
time = np.arange(startTime, endTime, sampleTime)
result = amp * np.sin(2 * np.pi * freq * time + startTime) + bias
plt.figure(figsize=(12, 6))
plt.plot(time, result)
plt.grid(True)
plt.xlabel("time")
plt.ylabel("sin")
plt.title(str(amp) + "*sin(2*pi" + str(freq) + "*t+" + str(startTime) + ")+" + str(bias))
plt.show()
plotSinWave()
plotSinWave(amp=2, freq=0.5, endTime=10)
%%writefile ./drawSinWave.py
import numpy as np
import matplotlib.pyplot as plt
def plotSinWave(**kwargs):
"""
plot sine wave
y = a sin(2 pi f t + t_0) + b
"""
endTime = kwargs.get("endTime", 1)
sampleTime = kwargs.get("sampleTime", 0.01)
amp = kwargs.get("amp", 1)
freq = kwargs.get("freq", 1)
startTime = kwargs.get("startTime", 0)
bias = kwargs.get("bias", 0)
figsize = kwargs.get("figsize", (12, 6))
time = np.arange(startTime, endTime, sampleTime)
result = amp * np.sin(2 * np.pi * freq * time + startTime) + bias
plt.figure(figsize=(12, 6))
plt.plot(time, result)
plt.grid(True)
plt.xlabel("time")
plt.ylabel("sin")
plt.title(str(amp) + "*sin(2*pi" + str(freq) + "*t+" + str(startTime) + ")+" + str(bias))
plt.show()
if __name__ == "__main__":
print("hello world~!!")
print("this is test graph!!")
plotSinWave(amp=1, endTime=2)
import drawSinWave as dS
dS.plotSinWave()
%%writefile ./set_matplotlib_hangul.py
import platform
import matplotlib.pyplot as plt
from matplotlib import font_manager, rc
path = "c:/Windows/Fonts/malgun.ttf"
if platform.system() == "Darwin":
print("Hangul OK in your MAC!!!")
rc("font", family="Arial Unicode MS")
elif platform.system() == "Windows":
font_name = font_manager.FontProperties(fname=path).get_name()
print("Hangul OK in your Windows!!!")
rc("font", family=font_name)
else:
print("Unknown system.. sorry~~~")
plt.rcParams["axes.unicode_minus"] = False
import set_matplotlib_hangul
>>>
Hangul OK in your MAC!!!
plt.title("한글")
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
time = np.linspace(0, 1, 365*2)
result = np.sin(2*np.pi*12*time)
ds = pd.date_range("2018-01-01", periods=365*2, freq="D")
df = pd.DataFrame({"ds": ds, "y": result})
df.head()
df["y"].plot(figsize=(10, 6));
from prophet import Prophet
m = Prophet(yearly_seasonality=True, daily_seasonality=True)
m.fit(df);
future = m.make_future_dataframe(periods=30)
forecast = m.predict(future)
m.plot(forecast);
2.
time = np.linspace(0, 1, 365*2)
result = np.sin(2*np.pi*12*time) + time
ds = pd.date_range("2018-01-01", periods=365*2, freq="D")
df = pd.DataFrame({"ds": ds, "y": result})
df["y"].plot(figsize=(10, 6));
m = Prophet(yearly_seasonality=True, daily_seasonality=True)
m.fit(df)
future = m.make_future_dataframe(periods=30)
forecast = m.predict(future)
m.plot(forecast);
3.
time = np.linspace(0, 1, 365*2)
result = np.sin(2*np.pi*12*time) + time + np.random.randn(365*2)/4
ds = pd.date_range("2018-01-01", periods=365*2, freq="D")
df = pd.DataFrame({"ds": ds, "y": result})
df["y"].plot(figsize=(10, 6));
m = Prophet(yearly_seasonality=True, daily_seasonality=True)
m.fit(df)
future = m.make_future_dataframe(periods=30)
forecast = m.predict(future)
m.plot(forecast);
import pandas as pd
import pandas_datareader as web
import numpy as np
import matplotlib.pyplot as plt
from prophet import Prophet
from datetime import datetime
%matplotlib inline
pinkwink_web = pd.read_csv(
"../data/05_PinkWink_Web_Traffic.csv",
encoding="utf-8",
thousands=",",
names=["date", "hit"],
index_col=0
)
pinkwink_web = pinkwink_web[pinkwink_web["hit"].notnull()]
pinkwink_web.head()
# 전체 데이터 그려보기
pinkwink_web["hit"].plot(figsize=(12, 4), grid=True);
# trend 분석을 시각화하기 위한 x축 값을 만들기
time = np.arange(0, len(pinkwink_web))
traffic = pinkwink_web["hit"].values
fx = np.linspace(0, time[-1], 1000)
# 에러를 계산할 함수
def error(f, x, y):
return np.sqrt(np.mean((f(x) - y) ** 2))
fp1 = np.polyfit(time, traffic, 1)
f1 = np.poly1d(fp1)
f2p = np.polyfit(time, traffic, 2)
f2 = np.poly1d(f2p)
f3p = np.polyfit(time, traffic, 3)
f3 = np.poly1d(f3p)
f15p = np.polyfit(time, traffic, 15)
f15 = np.poly1d(f15p)
print(error(f1, time, traffic))
print(error(f2, time, traffic))
print(error(f3, time, traffic))
print(error(f15, time, traffic))
>>>
430.8597308110963
430.6284101894695
429.53280466762925
330.4777304578471
plt.figure(figsize=(12, 4))
plt.scatter(time, traffic, s=10)
plt.plot(fx, f1(fx), lw=4, label='f1')
plt.plot(fx, f2(fx), lw=4, label='f2')
plt.plot(fx, f3(fx), lw=4, label='f3')
plt.plot(fx, f15(fx), lw=4, label='f15')
plt.grid(True, linestyle="-", color="0.75")
plt.legend(loc=2)
plt.show()
df = pd.DataFrame({"ds": pinkwink_web.index, "y": pinkwink_web["hit"]})
df.reset_index(inplace=True)
df["ds"] = pd.to_datetime(df["ds"], format="%y. %m. %d.")
del df["date"]
df.head()
m = Prophet(yearly_seasonality=True, daily_seasonality=True)
m.fit(df);
# 60일에 해당하는 데이터 예측
future = m.make_future_dataframe(periods=60)
future.tail()
# 예측 결과는 상한/하한의 범위를 포함해서 얻어진다
forecast = m.predict(future)
forecast[["ds", "yhat", "yhat_lower", "yhat_upper"]].tail()
m.plot(forecast);
m.plot_components(forecast);