86491 최소직사각형

알파로그·2023년 3월 12일
0

✏️ 문제 설명

명함 지갑을 만드는 회사에서 지갑의 크기를 정하려고 합니다.

다양한 모양과 크기의 명함들을 모두 수납할 수 있으면서,

작아서 들고 다니기 편한 지갑을 만들어야 합니다.

이러한 요건을 만족하는 지갑을 만들기 위해 디자인팀은 모든 명함의 가로 길이와 세로 길이를 조사했습니다.

아래 표는 4가지 명함의 가로 길이와 세로 길이를 나타냅니다.

명함 번호가로 길이세로 길이
16050
23070
36030
48040

가장 긴 가로 길이와 세로 길이가 각각 80, 70이기 때문에 80(가로) x 70(세로) 크기의 지갑을 만들면 모든 명함들을 수납할 수 있습니다.

하지만 2번 명함을 가로로 눕혀 수납한다면 80(가로) x 50(세로) 크기의 지갑으로 모든 명함들을 수납할 수 있습니다.

이때의 지갑 크기는 4000(=80 x 50)입니다.

모든 명함의 가로 길이와 세로 길이를 나타내는 2차원 배열 sizes가 매개변수로 주어집니다.

모든 명함을 수납할 수 있는 가장 작은 지갑을 만들 때,

지갑의 크기를 return 하도록 solution 함수를 완성해주세요.

✏️제한사항

  • sizes의 길이는 1 이상 10,000 이하입니다.
    • sizes의 원소는 [w, h] 형식입니다.
    • w는 명함의 가로 길이를 나타냅니다.
    • h는 명함의 세로 길이를 나타냅니다.
    • w와 h는 1 이상 1,000 이하인 자연수입니다.

✏️ 문제 풀이

📍 1차 시도 - 성공

2차원 배열을 for 로 돌려 큰값과 작은값을 각각 Array List 에 보관해 내림차순으로 정렬해 문제를 해결했다.

import java.util.*;

class Solution {
    public int solution(int[][] sizes) {
         ArrayList<Integer> max = new ArrayList<>();
        ArrayList<Integer> min = new ArrayList<>();

        for (int[] size : sizes) {
            if (size[0] >= size[1]) {
                max.add(size[0]);
                min.add(size[1]);
            } else {
                max.add(size[1]);
                min.add(size[0]);
            }
        }

        Collections.sort(max, Collections.reverseOrder());
        Collections.sort(min, Collections.reverseOrder());
        
        return max.get(0) * min.get(0);
    }
}

📍 다른사람의 풀이

for 문에서 바로 Math.max 를 사용해 내가 몇번에 걸처 수행한 작업을 한번에 수행했다.

가독성 면에서 내 코드보다 훨신 좋아보인다.

class Solution {
    public int solution(int[][] sizes) {

        int length = 0, height = 0;

        for (int[] card : sizes) {
            length = Math.max(length, Math.max(card[0], card[1]));
            height = Math.max(height, Math.min(card[0], card[1]));
        }
        int answer = length * height;
        return answer;
    }
}
profile
잘못된 내용 PR 환영

0개의 댓글