다익스트라 알고리즘은 그래프에서 최단 거리를 구하는 알고리즘으로, 특정 노드에서 다른 노드들의 최단 거리를 구하는 문제가 주어졌을 때 다익스트라 알고리즘을 사용하면 문제를 해결할 수 있다.
1. 인접 리스트로 그래프 구현하기
다익스트라 알고리즘은 인접 행렬로 구현해도 좋지만 시간 복잡도 측면, N의 크기가 클 것을 대비해 인접 리스트를 선택하여 구현하는 것이 좋다. 그래프의 연결을 표현하기 위해 인접 리스트에 연결한 input 데이터 자료형은 (노드, 가중치)의 튜플 형태로 선언하여 연결한 점도 주의하자.
2. 최단 거리 리스트 초기화하기
최단 거리 리스트를 만들고, 출발 노드는 0, 이외의 노드는 무한()으로 초기화한다. 적당히 큰 값으로 설정 가능.
3. 값이 가장 작은 노드 고르기
최단 거리 리스트에서 현재 값이 가장 작은 노드를 고른다.
4. 최단 거리 리스트 업데이트하기
선택된 노드에 연결된 에지의 값을 바탕으로 다른 노드의 값을 업데이트한다. 1단계에서 저장해 놓은 연결 리스트를 이용해 현재 선택된 노드의 에지들을 탐색하고 업데이트하면 된다. 연결 노드의 최단 거리는 두 값 중 작은 값으로 업데이트한다.
5.과정 3~4를 반복해 최단 거리 리스트 완성하기
모든 노드가 처리될 때까지 과정 3~4를 반복한다. 과정 4에서 선택 노드가 될 때마다 다시 선택되지 않도록 방문 리스트를 만들어 처리하고, 모든 노드가 선택될 까지 반복하면 최단거리 리스트가 완성된다.
from queue import PriorityQueue
q = PriotiryQueue #()을 붙이지 않음
q.put((0, K))
TypeError: put() missing 1 required positional argument: 'item'
https://stackoverflow.com/questions/17534345/why-do-i-get-typeerror-missing-1-required-positional-argument-self
이 경우 TypeError가 난다. 왜 이러한 오류가 나는지 설명할 수 있어야 한다.