

Filter to an image (Convolution layer)

tf.keras.layers.Conv2Dtf.keras.layers.Activationtf.keras.layers.MaxPool2Dtf.keras.layers.Flattentf.keras.layers.Dense



import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
np.random.seed(7777)
tf.random.set_seed(7777)
class DataLoader():
def __init__(self):
# data load
(self.train_x, self.train_y), \
(self.test_x, self.test_y) = tf.keras.datasets.mnist.load_data()
def scale(self, x):
return (x / 255.0).astype(np.float32)
def preprocess_dataset(self, dataset):
(feature, target) = dataset
# scaling #
scaled_x = np.array([self.scale(x) for x in feature])
# Add channel axis 가짜 차원#
expanded_x = scaled_x[:, :, :, np.newaxis]
# label encoding #
ohe_y = np.array([tf.keras.utils.to_categorical(
y, num_classes=10) for y in target])
return expanded_x, ohe_y
def get_train_dataset(self):
return self.preprocess_dataset((self.train_x, self.train_y))
def get_test_dataset(self):
return self.preprocess_dataset((self.test_x, self.test_y))
# shape, dtype 확인하기
mnist_loader = DataLoader()
train_x, train_y = mnist_loader.get_train_dataset()
test_x, test_y = mnist_loader.get_test_dataset()
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
model = tf.keras.Sequential()
# 최초의 레이어는 Input의 shape을 명시해준다. (이 때 배치 axis는 무시한다.)
model.add(Conv2D(32, kernel_size=3, padding='same', activation='relu', input_shape=(28, 28, 1))) # 첫번째 layer input_shape넣어줘야함
model.add(Conv2D(32, kernel_size=3, padding='same', activation='relu'))
model.add(MaxPooling2D())
model.add(Conv2D(64, kernel_size=3, padding='same', activation='relu'))
model.add(Conv2D(64, kernel_size=3, padding='same', activation='relu'))
model.add(MaxPooling2D())
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.summary()
lr = 0.03
opt = tf.keras.optimizers.Adam(lr)
loss = tf.keras.losses.categorical_crossentropy
model.compile(optimizer=opt, loss=loss, metrics=['accuracy'])
hist = model.fit(train_x, train_y, epochs=2, batch_size=128, validation_data=(test_x, test_y))
hist.history
plt.figure(figsize=(10, 5))
plt.subplot(221)
plt.plot(hist.history['loss'])
plt.title("loss")
plt.subplot(222)
plt.plot(hist.history['accuracy'], 'b-')
plt.title("acc")
plt.subplot(223)
plt.plot(hist.history['val_loss'])
plt.title("val_loss")
plt.subplot(224)
plt.plot(hist.history['val_accuracy'], 'b-')
plt.title("val_accuracy")
plt.tight_layout()
plt.show()

import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
np.random.seed(7777)
tf.random.set_seed(7777)
from tensorflow.keras.layers import Input, Conv2D, MaxPool2D, Flatten, Dense
input_shape = (28, 28, 1)
inputs = Input(input_shape)
net = Conv2D(32, kernel_size=3, padding='same', activation='relu')(inputs)
net = Conv2D(32, kernel_size=3, padding='same', activation='relu')(net)
net = MaxPool2D()(net)
net = Conv2D(64, kernel_size=3, padding='same', activation='relu')(net)
net = Conv2D(64, kernel_size=3, padding='same', activation='relu')(net)
net = MaxPool2D()(net)
net = Flatten()(net)
net = Dense(128, activation="relu")(net)
net = Dense(64, activation="relu")(net)
net = Dense(10, activation="softmax")(net)
model = tf.keras.Model(inputs=inputs, outputs=net, name='VGG') #name은 모델이름 설정
model.summary()
Reference
1) 제로베이스 데이터스쿨 강의자료