알고리즘이 어떤 문제를 해결하는데 걸리는 시간
빅-오 표기법
n은 데이터의 크기를 나타낸다
O(log₂n)
입력 데이터의 크기가 커질수록 처리 시간이 로그(log: 지수 함수의 역함수) 만큼 짧아지는 알고리즘입니다. 예를 들어 데이터가 10배가 되면, 처리 시간은 2배가 됩니다. 이진 탐색이 대표적이며, 재귀가 순기능으로 이루어지는 경우도 해당됩니다.
O(n)
입력 데이터의 크기에 비례해 처리 시간이 증가하는 알고리즘입니다. 예를 들어 데이터가 10배가 되면, 처리 시간도 10배가 됩니다. '1차원 for문'이 있습니다.
O(n log₂ n) (Linear-Logarithmic)
데이터가 많아질수록 처리시간이 로그(log) 배만큼 더 늘어나는 알고리즘입니다. 예를 들어 데이터가 10배가 되면, 처리 시간은 약 20배가 된다. 정렬 알고리즘 중 '병합 정렬, 퀵 정렬'이 대표적입니다.
O(n²)
데이터가 많아질수록 처리시간이 급수적으로 늘어나는 알고리즘입니다. 예를 들어 데이터가 10배가 되면, 처리 시간은 최대 100배가 됩니다. 이중 루프(n² matrix)가 대표적이며 단, m이 n보다 작을 때는 반드시 O(nm)로 표시하는 것이 바람직합니다. '이중 for문'