π Python
Library
π NumPy: μμΉ μ°μ°μ μν λΌμ΄λΈλ¬λ¦¬
import numpy as np
arr = np.array([1, 2, 3, 4])
print(arr * 2)
print(np.mean(arr))
π Pandas: λ°μ΄ν° λΆμ λ° μ‘°μμ μν λΌμ΄λΈλ¬λ¦¬
import pandas as pd
data = {
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35]
}
df = pd.DataFrame(data)
print(df)
print(df['Age'].mean())
π Matplotlib: λ°μ΄ν° μκ°νλ₯Ό μν λΌμ΄λΈλ¬λ¦¬
import matplotlib.pyplot as plt
x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]
plt.plot(x, y, marker='o')
plt.title('Line Graph')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.show()
π Requests: HTTP μμ²μ 보λ΄κΈ° μν λΌμ΄λΈλ¬λ¦¬
import requests
response = requests.get('https://api.github.com')
print(response.status_code)
print(response.json())
π BeautifulSoup: μΉ μ€ν¬λνμ μν λΌμ΄λΈλ¬λ¦¬
from bs4 import BeautifulSoup
import requests
response = requests.get('https://www.example.com')
soup = BeautifulSoup(response.text, 'html.parser')
print(soup.title.string)
π Scikit-Learn: κΈ°κ³ νμ΅μ μν λΌμ΄λΈλ¬λ¦¬
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
iris = load_iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
model = RandomForestClassifier()
model.fit(X_train, y_train)
predictions = model.predict(X_test)
print(accuracy_score(y_test, predictions))