[JAVA] Garbage Collection

강민승·2023년 8월 31일
0

JAVA

목록 보기
5/15
post-thumbnail

들어가기 전

C/C++ 프로그래밍을 할 때 메모리 누수(Memory Leak)를 막기 위해 객체를 생성한 후 사용자하지 않는 객체의 메모리를 프로그래머가 직접 해제 해주어야 했습니다. 하지만, JAVA에서는 JVM(Java Virtual Machine)이 구성된 JRE(Java Runtime Environment)가 제공되며, 그 구성 요소 중 하나인 Garbage Collection(이하 GC)이 자동으로 사용하지 않는 객체를 파괴합니다.

GC에 대해서 알아보기 전에 'stop-the-world'라는 용어를 알아야합니다. 'stop-the-world'란, GC를 실행하기 위해 JVM이 애플리케이션 실행을 멈추는 것입니다. 어떤 GC 알고리즘을 사용하더라도 'stop-the-world'는 발생하게 되는데, 대개의 경우 GC 튜닝은 이 'stop-the-world' 시간을 줄이는 것이라고 합니다.

GC를 해도 더이상 사용 가능한 메모리 영역이 없는데 계속 메모리를 할당하려고 하면, OutOfMemoryError가 발생하여 WAS가 다운될 수도 있습니다. 행(Hang) 즉, 서버가 요청을 처리 못하고 있는 상태가 됩니다.

따라서 규모 있는 JAVA 애플리케이션을 효율적으로 개발하기 위해서는 GC에 대해 잘 알아야한다고 합니다. 이번에는 GC에 대해 간단하게 알아보겠습니다.


📌 Garbage Collection

C/C++ 언어와 달리 자바는 개발자가 명시적으로 객체를 해제할 필요가 없습니다. 자바 언어의 큰 장점이기도 합니다. 사용하지 않는 객체는 메모리에서 삭제하는 작업을 GC라고 부르며 JVM에서 GC를 수행합니다.

기본적으로 JVM의 메모리는 총 5가지 영역(class, stack, heap, native method, PC)으로 나뉘는데, GC는 힙 메모리만 다룹니다.

일반적으로 다음과 같은 경우에 GC의 대상이 됩니다.
1. 객체가 NULL인 경우 (ex. String str = null)

  1. 블럭 실행 종료 후, 블럭 안에서 생성된 객체

  2. 부모 객체가 null이 되면, 포함하는 자식 객체들도 자동으로 가비지 대상

GC는 Weak Generational Hypothesis 에 기반합니다. 우선 GC의 메모리 해제 과정에 대해 살펴보겠습니다.


아래 메모리의 해제 과정은 JAVA를 공부해도 알면 좋을 것 같습니다.

GC의 메모리 해제 과정

  1. Marking

  • 프로세스는 마킹을 호출합니다. 이것은 GC가 메모리가 사용되는지 아닌지를 찾아냅니다. 참조되는 객체는 파란색으로, 참조되지 않는 객체는 주황색으로 보여집니다. 모든 오브젝트는 마킹 단계에서 결정을 위해 스캔되어집니다. 모든 오브젝트를 스캔하기 때문에 매우 많은 시간을 소모하게 됩니다.
  1. Normal Deletion

    • 참조되지 않는 객체를 제거하고, 메모리를 반환합니다. 메모리 Allocator는 반환되어 비어진 블럭의 참조 위치를 저장해 두었다고 새로운 오브젝트가 선언되면 할당되도록 합니다.
  2. Compacting

  • 퍼포먼스를 향상시키기 위해, 참조되지 않는 객체를 제거하고 또한 남은 참조되어지는 객체들을 묶습니다. 이들을 묶음으로서 공간이 생기므로 새로운 메모리 할당 시에 더 쉽고 빠르게 진행 할 수 있습니다.

📌 Generational Garbage Collection 배경

위와 같이 모든 객체를 Mark & Compact 하는 JVM은 비효율적입니다. 다음과 같은 그래프를 보시겠습니다.

Y축은 할당된 바이트의 수이고 X축은 바이트가 할당될 때의 시간입니다. 보시다시피 시간이 갈수록 적은 객체만이 남습니다. 위와 같은 그래프에 기반한 것이 Weak Generational Hypothesis 입니다.


Weak Generational Hypothesis

신규로 생성한 객체의 대부분은 금방 사용하지 않는 상태가 되고, 오래된 객체에서 신규 객체로의 참조는 매우 적게 존재한다는 가설입니다.

이 가설에 기반하여 자바는 Young 영역과 Old 영역으로 메모리를 분할하고, 신규로 생성되는 객체는 Young 영역에 보관하고, 오랫동안 살아남은 객체는 Old 영역에 보관합니다.


📌 Generational Gabage Collection

1. Young 영역(Yong Generation 영역)

새롭게 생성한 객체의 대부분이 여기에 위치합니다. 대부분의 객체가 금방 접근 불가능 상태가 되기 때문에 매우 많은 객체가 Young 영역에 생성되었다가 사라집니다. 이 영역에서 객체가 사라질때 Minor GC 가 발생한다고 말합니다.

2. Old 영역(Old Generation 영역)

접근 불가능 상태로 되지 않아 Young 영역에서 살아남은 객체가 여기로 복사됩니다. 대부분 Young 영역보다 크게 할당하며, 크기가 큰 만큼 Young 영역보다 GC는 적게 발생합니다. 이 영역에서 객체가 사라질 때 Major GC(혹은 Full GC) 가 발생한다고 말합니다.

3. Permanet 영역

Method Area라고도 합니다. JVM이 클래스들과 메소드들을 설명하기 위해 필요한 메타데이터들을 포함하고 있습니다. JDK8부터는 PermGen은 Metaspace로 교체됩니다.

Old 영역이 Young 영역보다 크게 할당되는 이유는 Young 영역의 수명이 짧은 객체들은 큰 공간을 필요로 하지 않으며 큰 객체들은 Young 영역이 아니라 바로 Old 영역에 할당되기 때문이다.


📌 Generational Garbage Collection 과정

📍 Garbage Collection(가비지 컬렉션)의 동작 방식

Young 영역과 Old 영역은 서로 다른 메모리 구조로 되어 있기 때문에, 세부적인 동작 방식은 다르다. 하지만 기본적으로 가비지 컬렉션이 실행된다고 하면 다음의 2가지 공통적인 단계를 따르게 된다.

  • Stop The World
  • Mark and Sweep

1. Stop The World

Stop The World는 가비지 컬렉션을 실행하기 위해 JVM이 애플리케이션의 실행을 멈추는 작업이다. GC가 실행될 때는 GC를 실행하는 쓰레드를 제외한 모든 쓰레드들의 작업이 중단되고, GC가 완료되면 작업이 재개된다. 당연히 모든 쓰레드들의 작업이 중단되면 애플리케이션이 멈추기 때문에, GC의 성능 개선을 위해 튜닝을 한다고 하면 보통 stop-the-world의 시간을 줄이는 작업을 하는 것이다. 또한 JVM에서도 이러한 문제를 해결하기 위해 다양한 실행 옵션을 제공하고 있다.

2. Mark and Sweep

Mark: 사용되는 메모리와 사용되지 않는 메모리를 식별하는 작업
Sweep: Mark 단계에서 사용되지 않음으로 식별된 메모리를 해제하는 작업
Stop The World를 통해 모든 작업을 중단시키면, GC는 스택의 모든 변수 또는 Reachable 객체를 스캔하면서 각각이 어떤 객체를 참고하고 있는지를 탐색하게 된다. 그리고 사용되고 있는 메모리를 식별하는데, 이러한 과정을 Mark라고 한다. 이후에 Mark가 되지 않은 객체들을 메모리에서 제거하는데, 이러한 과정을 Sweep라고 한다.

📍 Minor GC의 동작 방식

Minor GC를 정확히 이해하기 위해서는 Young 영역의 구조에 대해 이해를 해야 한다. Young 영역은 1개의 Eden 영역과 2개의 Survivor 영역, 총 3가지로 나뉘어진다.

Eden 영역: 새로 생성된 객체가 할당(Allocation)되는 영역
Survivor 영역: 최소 1번의 GC 이상 살아남은 객체가 존재하는 영역

객체가 새롭게 생성되면 Young 영역 중에서도 Eden 영역에 할당(Allocation)이 된다. 그리고 Eden 영역이 꽉 차면 Minor GC가 발생하게 되는데, 사용되지 않는 메모리는 해제되고 Eden 영역에 존재하는 객체는 (사용중인) Survivor 영역으로 옮겨지게 된다. Survivor 영역은 총 2개이지만 반드시 1개의 영역에만 데이터가 존재해야 하는데, Young 영역의 동작 순서를 자세히 살펴보도록 하자.

동작 순서

  1. 새로 생성된 객체가 Eden 영역에 할당된다.
  2. 객체가 계속 생성되어 Eden 영역이 꽉차게 되고 Minor GC가 실행된다.
    2-1. Eden 영역에서 사용되지 않는 객체의 메모리가 해제된다.
    2-2. Eden 영역에서 살아남은 객체는 1개의 Survivor 영역으로 이동된다.
  3. 1~2번의 과정이 반복되다가 Survivor 영역이 가득 차게 되면 Survivor 영역의 살아남은 객체를 다른 Survivor 영역으로 이동시킨다.(1개의 Survivor 영역은 반드시 빈 상태가 된다.)
  4. 이러한 과정을 반복하여 계속해서 살아남은 객체는 Old 영역으로 이동(Promotion)된다.

객체의 생존 횟수를 카운트하기 위해 Minor GC에서 객체가 살아남은 횟수를 의미하는 age를 Object Header에 기록한다. 그리고 Minor GC 때 Object Header에 기록된 age를 보고 Promotion 여부를 결정한다.

또한 Survivor 영역 중 1개는 반드시 사용이 되어야 한다. 만약 두 Survivor 영역에 모두 데이터가 존재하거나, 모두 사용량이 0이라면 현재 시스템이 정상적인 상황이 아님을 파악할 수 있다.

이러한 진행 과정을 그림으로 살펴보면 다음과 같다.

HotSpot JVM에서는 Eden 영역에 객체를 빠르게 할당(Allocation)하기 위해 bump the pointer와 TLABs(Thread-Local Allocation Buffers)라는 기술을 사용하고 있다. bump the pointer란 Eden 영역에 마지막으로 할당된 객체의 주소를 캐싱해두는 것이다. bump the pointer를 통해 새로운 객체를 위해 유효한 메모리를 탐색할 필요 없이 마지막 주소의 다음 주소를 사용하게 함으로써 속도를 높이고 있다. 이를 통해 새로운 객체를 할당할 때 객체의 크기가 Eden 영역에 적합한지만 판별하면 되므로 빠르게 메모리 할당을 할 수 있다.

싱글 쓰레드 환경이라면 문제가 없겠지만 멀티쓰레드 환경이라면 객체를 Eden 영역에 할당할 때 락(Lock)을 걸어 동기화를 해주어야 한다. 멀티 쓰레드 환경에서의 성능 문제를 해결하기 위해 HotSpot JVM은 추가로 TLABs(Thread-Local Allocation Buffers)라는 기술을 도입하게 되었다. TLABs(Thread-Local Allocation Buffers)란 각각의 쓰레드마다 Eden 영역에 객체를 할당하기 위한 주소를 부여함으로써 동기화 작업 없이 빠르게 메모리를 할당하도록 하는 기술이다. 각각의 쓰레드는 자신이 갖는 주소에만 객체를 할당함으로써 동기화 없이 bump the poitner를 통해 빠르게 객체를 할당하도록 하고 있다.

📍 Major GC의 동작 방식

Young 영역에서 오래 살아남은 객체는 Old 영역으로 Promotion됨을 확인할 수 있었다. 그리고 Major GC는 객체들이 계속 Promotion되어 Old 영역의 메모리가 부족해지면 발생하게 된다. Young 영역은 일반적으로 Old 영역보다 크키가 작기 때문에 GC가 보통 0.5초에서 1초 사이에 끝난다. 그렇기 때문에 Minor GC는 애플리케이션에 크게 영향을 주지 않는다.
하지만 Old 영역은 Young 영역보다 크며 Young 영역을 참조할 수도 있다. 그렇기 때문에 Major GC는 일반적으로 Minor GC보다 시간이 오래걸리며, 10배 이상의 시간을 사용한다. 참고로 Young 영역과 Old 영역을 동시하 처리하는 GC는 Full GC라고 한다.


📖 Reference & Additional Resources

profile
Step by Step goes a long way. 꾸준하게 성장하는 개발자 강민승입니다.

0개의 댓글