DFS - Depth first search

deque를 사용하여 구현
from collections import deque
def dfs(graph, start_node):
visited = []
need_visited = deque([])
need_visited.append(start_node)
while need_visited:
node = need_visited.pop()
if node not in visited:
visited.append(node)
need_visited.extend(graph[node])
return visited
graph = dict()
graph['A'] = ['B', 'C']
graph['B'] = ['A', 'D']
graph['C'] = ['A', 'G', 'H', 'I']
graph['D'] = ['B', 'E', 'F']
graph['E'] = ['D']
graph['F'] = ['D']
graph['G'] = ['C']
graph['H'] = ['C']
graph['I'] = ['C', 'J']
graph['J'] = ['I']
print(dfs(graph, 'A'))
재귀를 사용하여 구현
def dfs(graph, start_node, visited = []):
visited.append(start_node)
for node in graph[start_node]:
if node not in visited:
dfs(graph, node, visited)
return visited
graph = dict()
graph['A'] = ['B', 'C']
graph['B'] = ['A', 'D']
graph['C'] = ['A', 'G', 'H', 'I']
graph['D'] = ['B', 'E', 'F']
graph['E'] = ['D']
graph['F'] = ['D']
graph['G'] = ['C']
graph['H'] = ['C']
graph['I'] = ['C', 'J']
graph['J'] = ['I']
print(dfs(graph, 'A'))
BFS - Breadth First Search

구현
from collections import deque
def bfs(graph, start_node):
visited = []
need_visited = deque([])
need_visited.append(start_node)
while need_visited:
node = need_visited.popleft()
if node not in visited:
visited.append(node)
need_visited.extend(graph[node])
return visited
graph = dict()
graph['A'] = ['B', 'C']
graph['B'] = ['A', 'D']
graph['C'] = ['A', 'G', 'H', 'I']
graph['D'] = ['B', 'E', 'F']
graph['E'] = ['D']
graph['F'] = ['D']
graph['G'] = ['C']
graph['H'] = ['C']
graph['I'] = ['C', 'J']
graph['J'] = ['I']
print(bfs(graph, 'A'))
- DFS는 가장 끝의 데이터를 추출
- BFS는 가장 앞의 데이터를 추출