MS AI School Day 67

Joy·2023년 7월 10일
0

MS AI School

목록 보기
67/101

딥러닝%20학습방법%20파트-3.pdf

112~


conda create -n AI python=3.11

activate AI

conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia

conda info --envs

conda remove --name [가상환경명] --all


[오전 11:05] MSAI2_선생님4

pip freeze > requirements.txt

like 2개

[오전 11:06] MSAI2_선생님4

pip install -r 0710requirements.txt

like 1개


absl-py==1.4.0
brotlipy==0.7.0
cachetools==5.3.1
colorama==0.4.6
contourpy==1.1.0
cycler==0.11.0
fonttools==4.40.0
google-auth==2.21.0
google-auth-oauthlib==1.0.0
grpcio==1.56.0
kiwisolver==1.4.4
Markdown==3.4.3
matplotlib==3.7.2
mkl-fft==1.3.6
mkl-service==2.4.0
mpmath==1.2.1
oauthlib==3.2.2
opencv-python==4.7.0.68
packaging==23.1
pandas==2.0.3
Pillow==9.4.0
protobuf==4.23.4
pyasn1==0.5.0
pyasn1-modules==0.3.0
pyparsing==3.0.9
python-dateutil==2.8.2
pytz==2023.3
requests-oauthlib==1.3.1
rsa==4.9
seaborn==0.12.2
six==1.16.0
tensorboard==2.13.0
tensorboard-data-server==0.7.1
tqdm==4.65.0
tzdata==2023.3
Werkzeug==2.3.6


main.py

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transform

from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10
from torchvision.models import resnet18

from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

print("device >>", device)

train_transform = transform.Compose(
[
transform.RandomHorizontalFlip(),
transform.RandomVerticalFlip(),
transform.RandAugment(),
transform.ToTensor(),
transform.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]
)

test_transform = transform.Compose([
transform.ToTensor(),
transform.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
])

train_dataset = CIFAR10(root="./data", train=True,download=True, transform=train_transform)
test_dataset = CIFAR10(root="./data", train=False,download=False, transform=test_transform)

train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True, num_workers=2)
test_loader = DataLoader(test_dataset, batch_size=128, shuffle=False, num_workers=2)

model = resnet18(pretrained=True)
num_features = model.fc.in_features
model.fc = nn.Linear(num_features, 10)
print("fc in features >>", num_features)
print(model)



https://doc.qt.io/qtforpython-6/tutorials/index.html

profile
🐣비전공자의 AI 입문기🐣

0개의 댓글