Gradient descent

ehekaanldk·2022년 11월 13일
0

경사하강법

import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential

데이터 소개

x_train = [1,2,3,4]
y_train=[0,-1,-2,-3]

tf.model=tf.keras.Sequential()

모델링

  • units==output shape
  • input_dim == input shape
tf.model.add(tf.keras.layers.Dense(units=1,input_dim=1))
  • SGD == standard gradient descendent, lr==learning rate(=step size)
sgd=tf.keras.optimizers.SGD(lr=0.1)
  • MSE == mean_sqaure_error, 1/m * sig(y'-y)^2
tf.model.complie(loss='mse', optimizer=sgd)
tf.model.summary()

fit() executes training

  • fit은 트레이닝 해라 (반복문 포함)
tf.model.fit(x_train, y_train, epochs=200)

predict() returns predicted value

y_predict=tf.model.predict(np.array([5,4]))
print(y_predict)

출력 결과

[[-3.9975324]
 [-2.9987302]]

0개의 댓글