Day 51

AI Engineering Course Log·2023년 7월 19일
0

road to AI Engineering

목록 보기
47/83

Machine Learning_review_day3

World Happiness Report

https://www.kaggle.com/datasets/ajaypalsinghlo/world-happiness-report-2021

  • Visualize as a responsive graphs (treemap(), sunburst(), choropleth())

  • treemap: data_frame=dataframe object, path=[parent column, child column], values=column property, color=column property

  • sunburst: data_frame=dataframe object, path=[parent column, child column], values=column property, color=column property

  • choropleth: data_frame=dataframe object, locations='column names', locationmode='country names', color='column names'

< By Year >

  • heatmap(im.show): px.imshow(dataframe object.corr( ), text_auto = True), text_auto=True: real value, correlation visualization

  • scattermatricx: px.scatter_matrix(dataframe object, dimensions=['property name'], color='property name'

==>

- The degree to which the value of another attribute (Ladder score) changes together with the value of the attribute (Logged GDP per capita) is strong, with a high positive correlation with a correlation coefficient of about 0.79.

- The degree to which the value of another attribute (Ladder score) changes together with the value of the attribute (Freedom to make life choices) is moderate, with a moderate positive correlation with a correlation coefficient of about 0.61.

- Since the correlation coefficient is about -0.02, the value of other attributes (Ladder score) hardly changes according to the value of the attribute (Generosity).

- It is a normal negative correlation with a correlation coefficient of about -0.42, and the extent to which the value of another attribute (Ladder score) changes together with the value of the attribute (Perceptions of corruption) is normal.


  • scatterplot: Dataframe object, x='x-axis property name', y='y-axis property name', size='property name', trendline='regression line type', trendline_color_override='color
    - trendline = {choose among "ols", "lowess", "rolling", "ewm", "expanding" }

<Linear Regression Model>





CO2 Emissions Forecast

https://www.kaggle.com/datasets/debajyotipodder/co2-emission-by-vehicles

0개의 댓글