BackPropagation & Assumption

JoongHyun's Blog·2023년 9월 7일
1

I helped by StatQuest Youtube Playlist
cells

Purpose

1. Assumption of Backprop

The Taylor series

In calculus, Taylor's theorem gives an approximation of a kk-times differentiable function around a given point by a polynomial of degree kk

f(x+Δx)=k=0Nf(k)(x)k!Δxkf(x+\Delta x) = \sum_{k=0}^{N} \frac{f^{(k)}(x)}{k!}\Delta x^{k}

The first-order Taylor polynomial is the linear approximation of the function, and the second-order Taylor polynomial is often referred to as the quadratic approximation.

Motivation : Linear approximation

If a real-valued function
f(x)f(x) is differentiable at the point
x=ax=a, then it has a linear approximation near this point. This means that there exists a function h1(x)h_1(x) such that

f(x)=f(a)+f(a)(xa)+h1(x)(xa),limxah1(x)=0f(x)=f(a)+f^{\prime}(a)(x-a)+h_1(x)(x-a), \quad \lim_{x \rightarrow a} h_1(x)=0

Taylor's theorem

Let kk ≥ 1 be an integer
and let the function ff : RRRR be kk times differentiable at the point aaRR.
Then there exists a function hkh_k : R → R such that

f(x)=f(a)+f(a)(xa)+f(a)2!(xa)2++f(k)(a)k!(xa)k+hk(x)(xa)kf(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2 !}(x-a)^2+\cdots+\frac{f^{(k)}(a)}{k !}(x-a)^k+h_k(x)(x-a)^k

and

limxahk(x)=0\lim_{x \rightarrow a} h_k(x)=0

2. how to use?

backprop 알고리즘은 다음의 조건에서 쉽게 사용 가능하다.

  • 임의의 feed-forward 신경망
  • 임의의 미분 가능한 비선형 활성 함수

예를 들어 i.i.d 데이터를 이용한 MLE 함수를 사용할 수 있다.
이 때 에러 함수는 모든 관찰 데이터의 에러의 합으로 표현 가능하다.

Etotal(w)=n=1NEn(w)E_{total}(w) = \sum_{n=1}^N E_n(w)
profile
AI와 수학, 일상 기록들

0개의 댓글