민겸이는 로마 숫자를 보고 굉장히 흥미롭다고 생각했다. 그래서 민겸이는 새로운 수 체계인 민겸 수를 창조했다.
민겸 숫자는 0 이상의 정수 N에 대해 10N 또는 5 × 10N 꼴의 십진수를 대문자 M과 K로 이루어진 문자열로 표기한다. 10N 꼴의 십진수는 N + 1개의 M으로, 5 × 10N 꼴의 십진수는 N개의 M 뒤에 1개의 K를 이어붙인 문자열로 나타낸다. 즉, 아래 표처럼 나타낼 수 있다.
민겸 수는 한 개 이상의 민겸 숫자를 이어붙여 만든다. 예를 들어, 민겸 수 MKKMMK는 MK, K, MMK의 세 민겸 숫자를 이어붙여 만들 수 있다.
민겸 수를 십진수로 변환할 때는, 1개 이상의 민겸 숫자로 문자열을 분리한 뒤, 각각의 민겸 숫자를 십진수로 변환해서 순서대로 이어붙이면 된다. 민겸 숫자를 십진수로 변환하는 것은 십진수를 민겸 숫자로 변환하는 과정을 거꾸로 하면 된다. 예를 들어, 민겸 수 MKKMMK는 아래 그림과 같이 여러 가지 십진수로 변환할 수 있다.
민겸이는 위와 같이 하나의 민겸 수가 다양한 십진수로 변환될 수 있다는 사실을 알았다. 문득 민겸이는 변환될 수 있는 십진수 중 가장 큰 값과 가장 작은 값이 궁금해졌다. 민겸이를 위해 하나의 민겸 수가 십진수로 변환되었을 때 가질 수 있는 최댓값과 최솟값을 구해주자.
민겸 수 하나가 주어진다. 민겸 수는 대문자 M과 K로만 이루어진 문자열이며, 길이는 3,000을 넘지 않는다.
주어진 민겸 수가 십진수로 변환되었을 때 가질 수 있는 값 중 가장 큰 값과 가장 작은 값을 두 줄로 나누어 출력한다.
- M 은 1,10,100 ... K는 5
- 10N 꼴의 십진수는 "N + 1개의 M" 제곱하는 방법은 **쓰면 된다 !!
- 5 × 10N 꼴의 십진수는 "N개의 M" 뒤에 1개의 K를 이어붙인 문자열
- 최댓값 갖는 경우는 무조건 K로 끊겼을 때 MK변환하는 것
- 최솟값 갖는 경우는 다 끊고, M끼리는 MM 누적
import sys
sys.stdin = open("input.txt","rt")
def input():
return sys.stdin.readline().rstrip()
minRes = []
maxRes = []
cnt = 0
str = input()
for i in range(len(str)):
if str[i] == 'M':
cnt += 1
elif str[i] == 'K':
if cnt == 0:
minRes.append(5)
maxRes.append(5)
else:
minRes.append(10**(cnt-1))
minRes.append(5)
maxRes.append(5*10**(cnt))
cnt = 0
if cnt > 0:
minRes.append(10**(cnt-1))
for _ in range(cnt):
maxRes.append(1)
for x in maxRes:
print(x,end='')
print()
for x in minRes:
print(x,end='')
이렇게 생각해봤지만 마지막 print를 할 줄 몰라 오래걸렸다
minRes = []
maxRes = []
strInput = input()
for i in strInput.split('K'):
if i:
minRes.append(str(10**(len(i)-1)))
maxRes.append(str(5*10**(len(i))))
else:
minRes.append('')
maxRes.append(str(5))
print(''.join(maxRes[:-1])+'1'*(len(maxRes[-1])-1))
print('5'.join(minRes))
- join 으로 문자열을 한번에 출력하기 위해선 list의 원소가 모두 string 이어야 가능하다.
- 또한 split 으로 특정 문자 기준으로 나누는 방법도 알아둬라 !
- '문자' * 정수 는 '문자' 를 정수 만큼 반복해서 만들어낸다